The FreeM Manual

THE OFFICIAL MANUAL OF FREEM
Version 0.64.0-rcl

Serena Willis

This manual is for FreeM, (version 0.64.0-rcl), which is a free software implementation of
the M programming language.
Print-optimized versions of this book are typeset in Computer Modern by the author using
the GNU Texinfo tools.
Copyright (©) 2014-2025 Coherent Logic Development LLC
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover texts, and with no Back-Cover Texts.

Table of Contents

Introduction 1
Production Readiness. 1
ContribULOTS . . oot 1

1 Document Conventions 3
1.1 Formatting Conventionso, 3
1.2 Definitions . ..ottt e 3

2 A Noteon Standards 4

3 FreeM Invocation.............. 5
B T T o) 5
3.2 %SYSINIT ROUBINE. . o oo ettt e e e e e 5
3.3 Command-Line Options, 5
3.4 Using FreeM for Shell Scripting.................ooiiiiiiii.. 6

4 The FreeM Environment Daemon 8

5 The FreeM Direct-Mode Environment 9
5.1 Direct-Mode CommandsSottt 9
5.2 REPL Functionality ... 11

6 Debugging..................... . 12
6.1 Debugging Synopsisoueiiiinii 12
6.2 Debugging Commands...........c.coooviiiiiiiiiiiiiiinin.. 12

7 Directives. 13
7.1 GDIALECT . .o e e e 13

8 Intrinsic Special Variables..................... 14
8.1 SDEVICE 14
8.2 SDIALECT ...ttt 14
8.3 SECODE 14
8.4 SESTACK . .ot 14
8.5 SETRAP oot 14
8.6 SHOROLOG . ..t 15
BT BIO . 15
8.8 BIOB .. 15

8.0 SKEY .. 15

8.10 SPDISPLAY .ot 15
8. 11 SPRINCIPAL . ..ot 15
8.12 SREFERENCEttt i 15
813 SQUIT ...t 15
814 SSTACK . .ot 15
8.15 SSTORAGE. ...t e 16
8.16 SSYSTEM ..ot e, 16
o 0) i R 16
8.18 ST LEVEL . . oo, 16
.19 SWITH ..ot 16
.20 BX e 16
B 21 BY o 16
8.22 B A . 16
8.28 BB 17
8.24 $ZCONTROLC ..ot i 17
.25 SZDATE . ..o e 17
8.26 S$ZERROR . ..ot 17
8.27 S$ZHOROLOG . . . oo 17
8.28 SZINRP T . .ottt 17
8.20 BZJOB . . o 17
8.30 SZLOC AL ..ot 17
8.31 SN AME . .o 17
8.32 SZPRECISIONottt 17
8.33 S$ZREFERENCEottt i 17
8.34 SZSY ST EM ..o, 18
8.35 SZTIME ..t e, 18
8.36 SZTRAP .. o 18
.37 BZUT .o 18
8.38 SZVERSION ... 18
Intrinsic Functions 19
9.1 BASCIL. .o 19
0.2 SCHAR ..o 19
0.3 B AT A o, 19
9.4 SEXTRACT ..t 19
0.5 SFIND . .ot 20
9.6 SENUMBER 20
0.7 SGE T oo, 20
9.8 SINSTANCEOF . ..o i, 20
9.9 SIJUSTIFY .ottt 21
9.10 SLENGTH . ..ottt e 21
9.11 SN AME . .o 21
0.12 SNEXT ..ottt 21
9.13 SORDER . .ot 21
9.14 SPIECE 22
9.15 SQLENGTH ... e 22
916 SQSUBSCRIPT ...\t 929
917 SQUERY ..« .ot 22

ii

9.18 SRANDOM . ..ot 23

9.19 SREVERSE 23
9.20 SSELEC T . .. 23
0.21 SSTACK ..o 23
0.22 BT X T .t 24
9.23 STRANSLATE . ..ot 24
0.24 ST Y PE ..o, 24
9.25 SVIEW . oot 24
9.26 $ZBOOLEAN . ..ottt 24
9.27 SZCALL ..o 25
0.28 SZCRC .ot e 25
0.29 SZD AT A . .o 25
9.30 SZDATE . ..o 25
9.31 SZEDI T . .o 25
9.32 $ZHOROLOGot i 25
0.33 SZKEY oo e 26
0.34 SZLENGTH . ..ot 26
.35 BZLSD .o e 26
0.36 B o 26
9.37 SZNAME . .o 26
0.38 BZNE X T ..ottt 26
9.39 $ZORDER . .ottt 26
9.40 SZPIECE . . oo 26
9.41 SZPREVIOUS ... 27
9.42 SZREPLACE . ..o 27
0.43 SZSY N T A X oo 27
9.44 SZTIME . . oo 27
10 OBJECT Methods.............ciii ... 28
10.1 $STONUMBER.ot 28
10.2 SETYPE oot 28
10.3 SEVALUE . ..o 28
11 STRING Methods............................ 29
11,1 BSASCII ..o 29
11.2 SEDATA oo 29
11.3 $SDISTANCEo i 29
11.4 $SEXTRACT .ot i 29
115 SEFIND . oo e e e 29
11.6 $SENUMBER e 29
11.7 SSTUSTIFEY ..ot e e i 30
11.8 SSLENGTH . . oo i 30
11.9 $SPIECECOUNT ..ottt i 30
1110 $SPIECE . . oo oo e 30
11.11 $SREPLACE . . . oot e 30
11.12 SSREVERSE . . oo 30
11.13 $STOLOWER . .o oot i 30

11.14 $STOUPPERo 30
11.15 $STRANSLATE ..ot i, 30
12 Commands 31
121 @ 31
12,2 31
123 M 32
12.4 ABLOCK ..o 32
125 ASTART . . oo 32
12.6 ASTOP . .o 33
12.7 AUNBLOCK . . oo i 33
12.8 BREAK . ..o, 33
12.9 CLOSE ..o 34
1210 DO o 34
1211 ELSE oo 34
1212 FOR oot 35
1213 GOT O . o 36
12.04 HAL T .o 37
1215 HANG .« oo 37
1216 TF oo 37
1207 JOB oo 38
12.18 KILL .o 38
12.19 KSUBSCRIP TS . . o e s 38
12.20 KVALUE .« oo 39
1221 LOCK .o 39
12.22 MERGE . .o o 40
12.23 NEW o 40
12.24 OPEN .« oot 41
12.25 QUIT oo 42
1226 READ oot 42
12,27 SE T . 43
12.28 T COMMIT ... 43
12.29 THEN « oo 43
12.30 TROLLBACK . .ot i, 44
12.31 TS T AR . . o 44
12.32 USE . o 45
12.33 VIEW 45
1234 WRITE .. .o 49
12.35 XECUTE . .o s, 49
12.36 ZASSE R . ..o 49
12.37 ZBREAK ... 49
12.38 ZCON ST oo 50
12.39 ZGOTO ..o 50
12.40 ZHALT . . o 50
12.41 ZINSER T . ..o 50
12.42 ZJOB .. 50
12.43 ZLOAD . ..o 51
1244 ZMAP o 51

iv

12.45 ZNEW L o1
12,46 ZPRIN T .. o1
1247 ZQUIT « oo 51
1248 ZREMOVE ... 51
12,49 ZSAVE .o o1
12.50 ZTHROW .. e 52
12,51 ZTRAP . 52
1252 ZUNMARP . .o 52
1253 ZWATCH . .. 52
1254 ZWITH . ..o 53
1255 ZWRITE .. 53
13 Structured System Variables................. 54
13.1 "SCHARACTERot 54
13.2 "SDEVICE. ... 54
13.3 “8DISPLAY .. o7
134 “SEVENT .. o7
135 "SGLOBAL . ..o o7
13.6 “8JOB . 58
13.7 "SLOCK . 62
13.8 “SOBJECT ... 62
13.9 “SROUTINE. .. .o 62
1310 "8SYSTEM ..ot 63
1311 "SWINDOW .. 64
13.12 “3ZPROCESS ...ttt 65
1313 “8ZRPI . 65
14 Operators...................................... 66
141 Unary 4 .o 66
14.2 UnaTy - oo 66
143 A (Ad) oo 66
144 += (Add/ASSIgN) ..ottt 66
14.5 4+ (Postfix Increment) 66
14.6 - (SUbtract)oovee 66
14.7 -= (Subtract/Assign)o.uuiuiii 66
14.8 — (Postfix Decrement)coo i 66
14.9 % (Multiply) . ..o 66
14.10 *= (Multiply/ASsign)c.ouieiiii 67
TAIT [(DIVAAE) o oo 67
14.12 /= (Divide/ASSIgN) ... ooiuiii i 67
14.13 \ (Integer Divide)oovuiririii 67
14.14 \= (Integer Divide/Assign)..........cooiiiiiiiiiiiiiiiiann 67
14.15 # (Modulo) . ..o 67
14.16 #= (Modulo/ASSign)oiuiiiiiiiiiiii i 67
14.17 ** (Exponentiate)oououiiuiiiiiiiiiiiiii ... 67
14.18 **= (Exponentiate/ASSIgN).ovviiiiiiiiiiiiiiiann 67
14.19 < (Less Than).......ooouiiiiiiii e 67

14.20 <= (Less Than or Equal To)........................... ..., 67
14.21 > (Greater Than)o.ueiiuii i 67
14.22 >= (Greater Than or Equal To) 67
14.23 _ (Concatenate)o.vueuiuiniuiiii i 67
14.24 _= (Concatenate/Assign)............coviiiiiiiiiiiiiiin., 67
14.25 = (Equals)o 67
14.26 [(COMBAIIS) « v v vttt et 67
14.27] (FOLOWS) .o vv ettt e 67
14.28] (Sorts After) 67
14.29 7 (Pattern Match) ... 67
14.30 & (Logical AND) ...ttt 68
14.31 ! (Logical OR) . .ooininii 68
14.32 7 (Logical NOT) ..ot e 68
14.33 @ (INdirect) . ..o v et 68
15 Routines............... 69
15.1 Routine Naming. ... 69
16 Types 70
16.1 BOOLEAN ..o 70
16.2 COMPLEX ... 70
16.3 INTEGER 70
16.4 REAL. ..o 70
16.5 STRINGo e e e e 70
16.5.1 String Rules...........o i 70
16.5.2 String Quoting Rules........... i 70

16.6 Custom Types (Classes)ouuuiuiriiiiiiinaiiinaenns 70
17 Globals.......... 71
17.1 Globals OVErviewuiitt i 71
17.2 Creating Globals i 71
17.3 Removing Globals.......... ... i i 71
17.4 Global Storage e 71
18 Concurrency Control 73
18.1 Concurrency Control Overview ..., 73
18.2 Advisory Locks.o 73
18.3 Transaction Processing.......... ..., 73
18.3.1 Theory of Operation.............cooiiiiiiiiii .. 73
18.3.2 Using Transaction Processing............................ 74
18.3.2.1 BATCH Transactions.............coviueiiuennnn ... 75

18.3.2.2 SERIAL Transactions............c.cceeviueeeennnn... 75

19 Local Variables................................ 76
19.1 Local Variables Overviewccoiiiiiiiiiiineniinna.n. 76
19.2 Creating Local Variableso .. 76

19.3 Removing Local Variables.................., 76

vi

20 SCOPING ..ot 77
20.1 Scoping Considerations for STEST............................ 77
21 Decision Constructs 79
22 Branch Constructs.......... 80
23 Loop Constructs.............................. 81
24 Modular Programming....................... 82
24.1 SUDTOULINES . . oottt 82
24.2 Extrinsic Functions. 82
25 Object-Oriented Programming 83
20,1 ClaSSS e o vttt 83
25.1.1 Class OVEIVIEW . ..o vt et e 83
25.1.2 CONSEIUCLOTS v o v vttt e e e e e e 83
25.1.3 Destructors.ot 83

25.2 Inheritance.o 84
25.2.1 Runtime Polymorphism.............. oL 84

25.3 Methodso 84
25.4 Public and Private Variables........ 84
25.5 Instantiating Objects....... ..o 85
25.5.1 Determining Object Class ..., 85

26 Libraries............ ... 86
27 Sequential I/O 87
28 Network I/O....... 88
28.1 Opening and Connecting a Client Socket...................... 88
29 Extended Global References................. 89
29.1 Standard Extended Global References 89
30 Global Aliasing................................ 90

31 Global Mappings............ccooiiiiiiinnnn... 91

vii

32 Asynchronous Event Handling............... 92
32.1 Setting Up Async Event Handlers 92
32.2 Registering an Asynchronous Event Handler 92
32.3 Enabling Asynchronous Event Handling 93
32.4 Disabling Asynchronous Event Handling 93
32.5 Temporarily Blocking Asynchronous Event Handling.......... 93

33 Global Triggers i, 95

34 Synchronous Event Handling 97

35 GUI Programming with MWAPIL............ 98

36 User-Defined Z Commands 99

37 User-Defined Z Functions................... 100

38 User-Defined SSVNs 101

39 Language Dialects........................... 102

40 System Library Routines 103
40.1 ~HZCOLUMNS . .o 103
40.2 SYSINIT ..o 103
40.3 “WZHELP 103
40.4 “HZROWS ..o 103

41 Interrupt Handling........................ .. 104

42 Error Processing............................. 105

43 FreeM Error Codes.......................... 106

44 System Configuration....................... 112
44.1 Installing FreeM. ... i 112

44.1.1 Installation Methods i it 112
44.1.2 Build Configurationo i, 113
44.1.3 Initial Configuration........... 113

44.1.3.1 Creating Additional Environments................. 113

44.1.3.2 Additional Customization.............ccovuveennn... 114

viii

45 Accessing FreeM from C Programs........ 115

45.1 freem_ref_t Data Structure 115
45.2 freem_ent_t Data Structure..............o L. 116
45.3 freem_init() 117
45.4 freem_version()........ ... 118
45.5 freem set() . ..o 118
456 freem_get(). .. .oun it 119
45.7 freem Kill() . ..o 120
45.8 freem_data() 121
45.9 freem_order() 121
45.10 freem_query ()o .ot 121
4511 freem_lock() .. .ovvnini 121
4512 freem_unlock()......... .o 121
45.13 freem_tStart()ot 121
45.14 freem_trestart() 122
45.15 freem_trollback()..........ooiiiiiii 122
45.16 freem_tlevel()o 122
45.17 freem_tcommit() ... 122
45.18 freem_function() ... 122
45.19 freem_procedure() 122
Appendix A FreeM Administrator............. 123
Appendix B FreeM VIEW
Commands and Functions..................... 125
B.1 VIEW 16: Total Count of Error
Messages/View Single Error Message ..o, 125
B.2 VIEW 17: Intrinsic Z-Commandscooveina... 125
B.3 VIEW 18: Intrinsic Z-Functions.............., 125
B.4 VIEW 19: Intrinsic Special Variables......................... 125
B.5 VIEW 20: Break Service Code...............c..ooiiiiiia.. 125
B.6 VIEW 21: View Size of Last Global.......................... 125
B.7 VIEW 22: Count VIEW 22 Aliases...........c.ccvvviievnnnn... 125
B.8 VIEW 23: View Contents of Input Buffer 125
B.9 VIEW 24: Maximum Number of Screen Rows................ 125
B.10 VIEW 25: Maximum Number of Screen Columns............ 125
B.11 VIEW 26: DO/FOR/XECUTE Stack Pointer............... 125
B.12 VIEW 27: DO/FOR/XECUTE Stack Pointer (On Error) ... 126
B.13 VIEW 29: Copy Symbol Table.............................. 126
B.14 VIEW 30: Inspect Arguments..............coviiiiiienann... 126
B.15 VIEW 31: Count Environment Variables.................... 126
Appendix C Implementation Limits........... 127

Appendix D US-ASCII Character Set......... 128

Appendix E FreeM Project Coding Standards .. 129

E.1 Module Headers 129
E.2 Variable Naming........ .o 129
E.3 Indentation and General Layout.............................. 130
E.4 Brace Placement (Functions).................. ..., 130
E.5 Brace Placement (if-for-while-do)...................... ... 130
E.6 Labels and goto.cooiuiiii e 131
E.7 Preprocessor Conditionals............. ... i i 131
E.8 coding standards, preprocessor conditionals................... 131
E.9 Overall Program Spacing.......... ...t 131
E.10 The switch() Statement.......... ..., 131
E11 Comments. e 132

Introduction

FreeM started its life as FreeMUMPS, written for MS-DOS and ported to SCO UNIX by
a mysterious individual going by the name of "Shalom ha-Ashkenaz". It was released to
MUG Deutschland in 1998. In 1999, Ronald L. Fox ported FreeM to the Red Hat Linux
5 distribution of the GNU/Linux operating system. Thereafter, maintenance was taken
over by the Generic Universal M Project, which changed its name first to Public Standard
MUMPS and then by popular request to FreeM.

When GT.M was open-sourced in late 1999, FreeM and GUMP were essentially abandoned.
L.D. Landis, the owner of the original GUMP SourceForge project, and one of FreeM’s
significant contributors, passed maintenance of FreeM and ownership of its SourceForge
project to Serena Willis in 2014. At this point, FreeM would not compile or run on modern
Linux systems, so steps were taken to remedy the most pressing issues in the codebase.
Limitations on the terminal size (previously hard-coded to 80x25) were lifted, and new
$VIEW functions were added to retrieve the terminal size information. $X and $Y intrinsic
special variables were updated to support arbitrary terminal sizes, and FreeM was once
again able to build and run.

In February of 2020, work began in earnest to build a development and support infrastruc-
ture for FreeM and begin the careful process of refining it into a more stable and robust
application.

For more information on FreeM history, see $PREFIX/share/freem/doc/freem_history.*
(distributed in PostScript, PDF, and plain text formats).

Production Readiness
FreeM is not yet production-ready. There are several show-stopping bugs that preclude a
general release for public use:

e Section 12.33 [VIEW], page 45 commands and Section 9.25 [$VIEW()],
page 24 functions are used extensively to configure and inspect the run-time behavior
of FreeM, rather than the "canonical" SSVN-based approach.

e Server sockets are not yet implemented.
e There are some situations that can result in segmentation faults and/or lock-ups.

e In spite of our best efforts, this manual is not yet complete.

Contributors

Current contributors denoted with a + following their name and role.
e Shalom ha-Ashkenaz (Original Implementer)
e John Best (IBM i and OS/400)
e Jon Diamond (Library, Utilities, Conformance)
e Ronald L. Fox (Initial port to Red Hat 5/libc-6)
e Winfried Gerum (Code, Advice, MTA coordination)
o Greg Kreis (Hardhats coordination, Dependencies)

e Larry Landis (Coordination, Code, Documentation)

Introduction

e Rick Marshall (Testing, MDC Conformance) +

e Lloyd Milligan (Code, Testing, Documentation)

e Steve Morris (Code, Microsoft)

e John Murray (Code, Conformance)

e Wilhelm Pastoors (Testing, Documentation)

e Kate Schell (Coordination, Conformance, MTA, MDC, Advice)
e Lyle Schofield (Advice, Prioritization, Tracking, Project Management)
e Jim Stefanik (GNU/Linux on s390x, IBM AIX, IBM z/0S)

e Axel Trocha (Code, Utilities)

e Dick Walters (Project Lead, Chief Coordinator, MTA)

e David Whitten (QA Test Suite, MDC, Advice) +

e David Wicksell (Debugging, Code, Testing) +

e Serena Willis (Current Maintainer and Project Lead) +

e Steve Zeck (Code)

1 Document Conventions

1.1 Formatting Conventions

This manual uses the following formatting conventions:

e Code examples, filesystem paths, and commands are presented in monospace

e Placeholders where the reader is expected to supply a replacement value are presented in
monospace italics, and depending on context, may be surrounded by angle brackets

e New terminology is introduced in proportional italics

1.2 Definitions

FreeM uses abbreviations for common language elements:

$PREFIX Refers to the base filesystem location within which FreeM is installed. For most

distribution methods of FreeM, $PREFIX represents either / or /usr/local.

dlabel Refers to a label in an M routine, beginning in the first column of the line. Can
be a name or an intlit.

entryref Refers to an M routine entry point, denoted in the format dlabel
[+intexpr] ["routine].

erpr Refers to any expression. Often presented in the format expr V <type>, where
V means giving; e.g., expr V lun means expression giving local variable name.

glun Refers to the name of an M global, local, or structured system variable.

gun Refers to the name of an M global variable.

ntexpr Refers to an integer expression.

intlit Refers to an integer literal.

ISV, isv Refers to an M intrinsic special variable; $J0B and $I0 are examples of ISVs.

L Indicates a list of the following item, e.g., L gun means list of global variable
names.

lun Refers to the name of an M local variable.

postcondition
A tvexpr immediately following a command verb affecting that command’s ex-
ecution.

strlit Refers to an M string literal.

ssUN Refers to the name of an M structured system variable.

tvexpr Refers to a truth-valued expression, i.e., an expression interpreted as a truth

value.

2 A Note on Standards

FreeM attempts to implement as many features as possible from the M Development Com-
mittee’s unpublished Millennium Draft Standard, as well as its predecessors.

The maintainer of FreeM (who is also the author of this book) is largely in favor of standard-
ization efforts, and hopes that the MDC will resume activities, and will happily participate
if it does so in an open, public, transparent, and democratic manner. Until then, however,
FreeM will attempt to improve the M language, in cooperation with other free software
M implementers where possible. Any breaking changes introduced in future MDC releases
of the Standard (such as the rumored M5) which prove incompatible with FreeM will be
handled via the $DIALECT special variable (to be changed to $ZDIALECT in a coming release).

The conformance document required per the Standard should be installed as a man page on
any computer system where FreeM is made available. Simply type man freem_conformance
to access.

3 FreeM Invocation

3.1 Synopsis
$./freem [OPTIONS...] [[-r <entryref>] | [--routine=<entryref>]]

When FreeM loads, it searches the SYSTEM namespace for the %SYSINIT routine, and begins
executing it.

When -r or --routine are passed on the command line, FreeM will load and run the
specified routine after running %SYSINIT. Beginning with FreeM 0.1.7, routines invoked
in this manner are no longer required to perform their own namespace setup with VIEW
commands.

3.2 %SYSINIT Routine

The %SYSINIT routine runs every time a FreeM interpreter process starts. This routine
defines some useful constants, enables handling of TRIGGER events, and handles the execution
of code passed via the -x|--execute or routines passed via -r|--routine.

Do not modify the supplied %SYSINIT routine to add site-specific startup items. Instead,
create a LCLINIT routine in the USER namespace of one or more environments. %SYSINIT
will automatically run LCLINIT each time it starts.

3.3 Command-Line Options

-d, -—daemon
Starts the FreeM environment daemon, exactly one of which must be running
at all times in order for FreeM interpreter and fmadm processes to function.

-e, ——environment
Selects the environment to be used. If no environment is specified, DEFAULT is
used.

-k, ——nofork
When used with -d or ——daemon, causes the FreeM environment daemon to run
instead in the foreground. Useful for debugging.

-S, ——shmsize
When used with -d or --daemon, specifies the number of bytes of shared mem-
ory FreeM will allocate for the LOCK table, job table, and IPC table. This
will determine the maximum number of concurrent FreeM processes and LOCKs
available in this environment.

-c, ——config
Specify a configuration file other than $PREFIX/etc/freem.conf.
-h, —-help
Display a help message showing valid FreeM options.
, ——import
Causes your UNIX environment variables to be imported into FreeM’s local
symbol table.

Chapter 3: FreeM Invocation 6

—f, ——filter

Allows your M routines to be used as UNIX filters.

-n <namespace-name>, ——-namespace=<namespace-name>
Selects the FreeM namespace to be entered on startup. Must be defined in
/etc/<environment>/freem.conf.

-r <entryref>, --routine=<entryref>
Causes <entryref> to be executed at load, instead of %SYSINIT.

--standard=<standard>
Sets the default FreeM dialect to use for new routine buffers.

Valid values for <standard> are as follows:

M77

M84

MO0

M95

MDS

M5

Restricts FreeM to use only features specified by the 1977 M stan-
dard.

Restricts FreeM to use only features specified by the 1984 M stan-
dard.

Restricts FreeM to use only features specified by the 1990 M stan-
dard.

Restricts FreeM to use only features specified by the 1995 M stan-
dard.

Restricts FreeM to use only features proposed by the Millennium
Draft Standard.

Restricts FreeM to use only features proposed by the upcoming M5
standard.

FREEM, EXTENDED

Removes all standards-based restrictions and allows full access to
all FreeM features. This is the default value of $DIALECT.

Please note that FreeM is not entirely standards-compliant, regardless of the
value of <standard>.

-v, ——version

Displays FreeM version information.

-x <mcode>, ——execute=<mcode>
Executes M code <mcode> at startup.

3.4 Using FreeM for Shell Scripting

FreeM M routines can be used as shell scripts by providing a shebang line beginning with
#!/path/to/freem as the first line of the routine. The following example presumes that
FreeM is installed at /usr/local/bin/freem and uses the USER namespace:

#!/usr/local/bin/freem

MYSCRIPT

b

SET ~$JOB($JOB, "NAMESPACE")="USER"
WRITE "This is output from an M routine used as a shell script.",!

Chapter 3: FreeM Invocation 7

Q

Currently, the script needs to have a .m file extension. You will also need to select an appro-
priate namespace in your script using the SET “$JOB($J0B, "NAMESPACE")="<namespace>"
command before attempting to call other routines or access globals.

You will also need to set the script’s permissions to executable in order for this to work:

$ chmod +x myscript.m

4 The FreeM Environment Daemon

The FreeM environment daemon manages shared resources for a given FreeM environment.
These include the lock table, job table, inter-process communication, and concurrency con-
trol for transaction processing. Unlike some M implementations, the FreeM environment
daemon does not function as a write daemon for global storage.

One daemon process is required per FreeM environment, and can be started in the following
ways, in order of preference:

$ sudo fmadm start environment [-e=<environment-name>]
$ freem --daemon [--nofork] [--environment=<environment-name>] [--shmsize=<bytes>]]]

If the daemon is started with —-nofork, it will run in the foreground and its output will
be reflected on the terminal. Otherwise, the daemon will run as a child process in the
background and immediately return terminal control to the shell. The latter option is
recommended in most cases.

The --environment option will start the daemon for the specified environment-name. The
default environment, if unspecified, is called DEFAULT. If using an environment other than
DEFAULT, interpreter processes that wish to also connect to the same environment must
also use the -—environment option when starting, and libfreem clients must also pass
the environment name as the first argument to the freem_init () function. Environments
allow you to run multiple, isolated instances of FreeM on the same machine, whose globals
and routines are distinct and unique.

The --shmsize option specifies the size in bytes of the FreeM shared memory segment.
The default is 4194304 bytes. Increasing the size of the FreeM shared memory segment will,
at the cost of increased memory usage, increase the number of concurrent jobs and lock
table entries available to the environment; decreasing the size of the segment will have the
expected opposite effect. Note that you must also pass ——shmsize with the same number
of bytes to any interpreter process to be used with an environment whose daemon uses a
non-default shared memory segment size.

Attempting to start a FreeM interpreter process without a daemon running with the same
environment name will result in an error.

5 The FreeM Direct-Mode Environment

The FreeM direct-mode environment is the mode entered when FreeM is invoked without
the use of -r <entryref> or -—-routine=<entryref>:

Coherent Logic Development FreeM version 0.64.0-rcl (x86_64-pc-linux-gnu)fj
Copyright (C) 2014, 2020, 2021 Coherent Logic Development LLC

USER>

The prompt (DEFAULT.USER>) displays the current environment and namespace, DEFAULT
and USER, respsectively. If any uncommitted direct-mode transactions have been started,
the prompt will change to reflect the current value of Section 8.18 [$TLEVEL], page 16:

TL1:DEFAULT.USER>

In the above example, TL1 indicates that Section 8.18 [$TLEVEL], page 16 is currently
1.

5.1 Direct-Mode Commands

When you are in direct mode, in addition to M commands, a number of internal commands
are available to help developers be more productive:

? Accesses FreeM online help. Requires GNU info(1) to be installed on your
local system.

events Writes a list of event classes and their ABLOCK counts:
DEFAULT.USER> events

Event Class Processing Mode ABLOCK Count
COMM Disabled 0
HALT Disabled 0
IPC Disabled 0
INTERRUPT Disabled 0
POWER Disabled 0
TIMER Disabled 0
USER Disabled 0
WAPI Disabled 0
TRIGGER Disabled 0

trantab Displays information about any uncommitted transactions currently in-flight
for this process.

trantab Displays statistics about globals that have been opened in the current FreeM
process.

jobtab Displays a summary of the FreeM job table.
locktab Displays a list of LOCKs held in the current environment.

rbuf Lists the status of all FreeM routine buffers.

Chapter 5: The FreeM Direct-Mode Environment 10

wh Forces an immediate flush of this process’s readline history buffer to disk.

shmstat Displays the configuration of FreeM shared memory. Intended only for advanced
debugging of the FreeM environment.

shmpages Lists the status of each FreeM shared memory page. Intended only for advanced
debugging of the FreeM environment.

history Prints a list of all the direct-mode commands you have entered across all ses-
sions.

rcl <history-index>
Allows you to recall command number <history-inder> and run it again. Obtain
the value for <history-index> from the output of the history command.

I Launches a subshell within the FreeM direct mode, allowing the user to run
operating system commands.

DEFAULT.USER> !!

Type Ctrl-D to exit from the shell

$ uname -a

Linux hesperos 4.19.0-17-amd64 #1 SMP Debian 4.19.194-3 (2021-07-18) x86_64
$ exit

DEFAULT.USER>

I<external-command>
Invokes a shell to run <external-command> from within FreeM. This temporarily
disables SIGALRM handling in FreeM, which may interrupt the use of event-
driven M programming commands including ASTART and ASTOP.

If the > character is supplied immediately preceding <external-command>,
FreeM will append the contents of an M local or global variable refer-
enced in ~$J0B($J0B,"PIPE_GLVN") to the standard input stream of
<external-command>.

If the < character is supplied immediately preceding <external-command>,
FreeM will take the standard output stream of <external-command> and store
it in M local or global variable referenced by ~$JOB($J0OB,"PIPE_GLVN").

The data value in the unsubscripted M local or global contains the number of
lines in the input or output. Subscripts (1)..(n) contain the data for lines
1-n.

If you issue a Section 12.14 [HALT], page 37 command at the direct-mode prompt, you
will exit out of FreeM. However, if you issue a Section 12.14 [HALT], page 37 command
when Section 8.18 [$TLEVEL], page 16 is greater than zero, you will be given the op-
portunity to commit or rollback any pending transactions:

DEFAULT.USER> TSTART

TL1:DEFAULT.USER> SET "MYGLOBAL=1

Chapter 5: The FreeM Direct-Mode Environment 11

TL1:DEFAULT.USER> HALT
UNCOMMITTED TRANSACTIONS EXIST:

$TLEVEL 1x
Operations for Transaction ID: k8xjlde
1: action = 0 key = "MYGLOBAL data =1

Would you like to c)ommit or r)ollback the above transactions and their operations? ($

Transactions have been rolled back.

In the above example, the user selected r to rollback the single pending transaction.

5.2 REPL Functionality

FreeM direct mode allows you to enter M expressions directly from the direct-mode prompt,
as long as they begin with a number:

DEFAULT.USER> S DENOM=10

DEFAULT.USER> 100/DENOM

10
DEFAULT .USER>

Such expressions will be immediately evaluated, and the result printed on Section 8.7
[$I0], page 15.

12

6 Debugging

6.1 Debugging Synopsis

FreeM includes an interactive debugger, entered using the BREAK "DEBUG" command. The
debugger is also entered if Ctrl-C is pressed, Ctrl-C handling is enabled, and you are in
direct mode.

If you would like to enter the debugger automatically each time an error is encountered,
add the following to your LCLINIT routine:

S $ETR= IIB n IIDEBUG nnn

6.2 Debugging Commands

The debugger uses its own unique command language, where M commands are unavailable.
Commands are as follows:

exit, quit
Exits the debugger and returns to direct mode or normal program execution.

e glun, examine glun
Prints the value of glvn to the terminal.

t, trace Toggles trace mode on and off. When trace mode is on, FreeM will display
information about each DO or GOTO command encountered, including the routine
which invoked the branch, which type of branch was invoked, and the target of
the branch.

s, step Single-steps through FreeM code command-by-command.
n, next Single-steps through FreeM code line-by-line.

c, cont, continue
Resumes normal program execution, disabling single-step mode.

bt, backtrace
Produces a stack trace.

h, halt Halts the process being debugged and returns control to the operating system.

w [[+|-17]<glvn>], watch [[+]|-]7]<glvn>]
With no arguments, toggles watchpoints on and off. With +, adds <glvn> to
the watchlist. With -, removes <glvn> from the watchlist. With ?, queries the
watch status of <glon>.

13

7 Directives

In FreeM, a directive is an instruction embedded in an M comment, and passed to the
interpreter to affect a change that is specific to the current routine only.

The format of a directive is ;%<directive-name>, where <directive-name> is one of the
directives listed below.

7.1 %DIALECT

Sets the M dialect in effect for the current routine buffer; also sets the $DIALECT special
variable to match. See also Section 8.2 [SDIALECT], page 14.
Syntax

;%ADIALECT <dialect>

Valid values for <dialect> are as follows:

M77 Restricts FreeM to use only features specified by the 1977 M standard.

M84 Restricts FreeM to use only features specified by the 1984 M standard.

M90 Restricts FreeM to use only features specified by the 1990 M standard.

M95 Restricts FreeM to use only features specified by the 1995 M standard.

MDS Restricts FreeM to use only features proposed by the Millennium Draft Stan-
dard.

M5 Restricts FreeM to use only features proposed by the upcoming M5 standard.

FREEM, EXTENDED
Removes all standards-based restrictions and allows full access to all FreeM
features. This is the default value of DIALECT.

Please note that FreeM is not entirely standards-compliant, regardless of the value of
%DIALECT.

14

8 Intrinsic Special Variables

8.1 $DEVICE

Returns the status of the device currently in use.

If $DEVICE returns I, an error condition exists on the current device. In this case, there
will be two additional fields separated by commas, indicating the internal FreeM error code
representing the error present on the device and a text explanation of the error.

8.2 $DIALECT

Returns or sets the language dialect of the current routine.
Valid values for $DIALECT are as follows:

M77 Restricts FreeM to use only features specified by the 1977 M standard.

M84 Restricts FreeM to use only features specified by the 1984 M standard.

M90 Restricts FreeM to use only features specified by the 1990 M standard.

M95 Restricts FreeM to use only features specified by the 1995 M standard.

MDS Restricts FreeM to use only features proposed by the Millennium Draft Stan-
dard.

M5 Restricts FreeM to use only features proposed by the upcoming M5 standard.

FREEM, EXTENDED
Removes all standards-based restrictions and allows full access to all FreeM
features. This is the default value of $DIALECT.

Please note that FreeM is not entirely standards-compliant, regardless of the value of
$DIALECT.

8.3 SECODE

Returns a comma-delimited list of error conditions currently present, and is writable. An
empty $ECODE indicates no errors.

Writing a value in the format ,<error-code>, into $ECODE will raise that error condition.

8.4 $ESTACK

Returns the depth of the program execution stack since the last time $ESTACK was NEWed.
NEW-able, but not SET-able. Differs from the Section 8.14 [$STACK], page 15ISV in that
it is Section 12.23 [NEW], page 40-able, and resets to a value of 0 when Section 12.23
[NEW], page 40ed.

8.5 SETRAP

Sets or retrieves the M code that is run when an error is encountered or Section 8.3
[$ECODE] , page 14 is set to a non-blank value. $ETRAP code executes when $ECODE be-
comes non-blank.

Chapter 8: Intrinsic Special Variables 15

8.6 SHOROLOG

Returns a string containing the current date and time as <days>,<seconds>, where <days>
represents the number of days since the M epoch (midnight on 31 December 1840), and
<seconds> represents the number of seconds since the most recent midnight.

-
FreeM Extension

In FreeM, $HOROLOG is Section 12.27 [SET], page 43table. Setting
$HOROLOG will set the system clock if your user account has the appropriate
permissions. If your user account does not have permissions to modify the
system clock, FreeM will raise a ZPROTECT error.

N

8.7 $IO

Represents the current input/output device. Read-only.

8.8 $JOB

Represents the process ID of the FreeM instance currently in use.

8.9 SKEY

Represents the sequence of control characters that terminated the last Section 12.26
[READ], page 42 command on Section 8.7 [$I0], page 15.

8.10 $PDISPLAY

Represents the current principal display for M Windowing API operations. Commonly used
as an index into the Section 13.3 ["$DISPLAY], page 57 structured system variable.

8.11 $PRINCIPAL

Represents the primary input/output device. Usually a terminal or virtual terminal.

8.12 SREFERENCE

Returns the last glun referenced. Can be Section 12.27 [SET], page 43, and also stacked
with Section 12.23 [NEW], page 40.

8.13 $QUIT

If the current execution context was invoked as an extrinsic function, $QUIT returns 1.
Otherwise, returns 0.

When $QUIT returns 1, a subsequent Section 12.25 [QUIT], page 42 command must
have an argument.

8.14 $STACK

Represents the current stack level.

Chapter 8: Intrinsic Special Variables 16

8.15 $STORAGE

Represents the number of bytes of free space available in FreeM’s heap.

8.16 $SYSTEM

Returns the MDC system ID of FreeM, as well as the environment ID of the current envi-
ronment.

8.17 $TEST

$TEST is a writable, Section 12.23 [NEW], page 40-able ISV that is 7 if the most recently
evaluated expression was true. Otherwise, returns 0.

$TEST is implicitly NEWed when entering a new stack frame for extrinsic functions and
argumentless Section 12.10 [DO], page 34. $TEST is not implicitly NEWed when a new
stack frame is entered with an argumented DO.

For single-line Section 12.16 [IF], page 37 or Section 12.11 [ELSE], page 34 expres-
sions, you may use Section 12.29 [THEN], page 43 to stack $TEST until the end of the
line. All new code should employ THEN in this manner, as stacking $TEST prevents a wide
range of coding errors that can be very challenging to detect and eliminate.

8.18 $STLEVEL

Returns a numeric value indicating the current level of transaction nesting in the process.
When $TLEVEL is greater than 0, uncommitted transactions exist.

8.19 $WITH
Returns the variable prefix set by the Section 12.54 [ZWITH], page 53 command.

8.20 $X

Represents the current column position of the FreeM cursor.

[In FreeM, setting $X will move the FreeM cursor.

8.21 8Y

Represents the current row position of the FreeM cursor.

[In FreeM, setting $Y will move the FreeM cursor.

8.22 $ZA

On the HOME device, always 0. On other devices, returns the current position of the file
opened on I/O channel Section 8.7 [$I0], page 15.

Chapter 8: Intrinsic Special Variables 17

8.23 $ZB
Represents the last keystroke.

8.24 $ZCONTROLC
Returns the status of the Ctrl-C flag and resets it to false.

8.25 $ZDATE

Returns the current date, in the preferred representation for the current system locale.

8.26 $ZERROR

Returns the last error message.

8.27 $ZHOROLOG
Output Section 8.6 [$HOROLOG], page 15-style time, with the addition of milliseconds.

8.28 $ZINRPT
Gets or sets the interrupt enable/disable flag.

8.29 $ZJOB

Returns the Section 8.8 [$J0B], page 15 value of the parent process if the current pro-
cess was started by a Section 12.17 [JOB], page 38 command. Otherwise, returns an
empty string.

8.30 $ZLOCAL

Returns the last local variable referenced.

8.31 $ZNAME

Returns the name of the current routine.

8.32 $ZPRECISION

Gets or sets the number of digits of numeric precision used for fixed-point decimal arith-
metic. If “$JOB($J0B, "MATH") is IEEE754, $ZPRECISION defaults to 16 digits, with a max-
imum of 16 digits. If ~$JOB($JOB, "MATH") is FIXED, $ZPRECISION defaults to 100 digits,
with a maximum of 20,000 digits.

See Section 13.6 [~$JOB], page 58.

8.33 $ZREFERENCE

Returns the last gvn referenced.

Chapter 8: Intrinsic Special Variables 18

8.34 $ZSYSTEM

Represents the return value of the last external command run with !.

8.35 $ZTIME

Returns the system time in the preferred representation for the current system locale.

8.36 $ZTRAP

Sets or retrieves the entryref to be executed when an M program execution error occurs
under FreeM-style or DSM 2.0-style error processing.

In FreeM-style error processing, $ZTRAP is specific to each program execution stack level.
In DSM 2.0-style error processing, $ZTRAP is the same for all program execution stack levels.

When FreeM encounters an error, if $ZTRAP is nonempty and $ETRAP is empty, FreeM will
perform an implicit Section 12.13 [GOTO], page 36 to the entryref indicated in $ZTRAP.

If $ETRAP is nonempty when FreeM encounters an error, the value of $ZTRAP is ignored,
whether FreeM-style or DSM 2.0-style error processing is enabled.

8.37 $ZUT
Returns the number of microseconds elapsed since the UNIX epoch (Jan 1, 1970 0:00:00).

8.38 $ZVERSION

Returns the version of FreeM in use, as well as the GNU host triplet for the current FreeM
build.

See hittps://wiki.osdev.org/Target_ Triplet.

19

9 Intrinsic Functions

9.1 $ASCII

Returns the ASCII code (in decimal) for one character in a string.
SET RESULT=$ASCII(<string>[,<index>])

If <index> is not supplied, $ASCII will return the ASCII code of the first character. Other-
wise, returns the ASCII code of the character at position <indezr>.

9.2 $CHAR

Returns a string of characters corresponding to a list of ASCII codes.
SET RESULT=$CHAR(<ascii-code>[,<ascii-code>,...])

9.3 $DATA
Returns a numeric value 0, 1, 10, or 11, depending on whether a referenced node is defined,
has data, or has children:
SET RESULT=$DATA(<node>)
The return values are as follows:

0: <node> is undefined

1: <node> has data but no children
10: <node> has children but no data
11: <node> has children and data

9.4 SEXTRACT

Extracts a substring of a string.
The first argument is the source string.

The optional second argument specifies the starting position of the substring to extract,
and defaults to 1.

The optional third argument specifies the ending position of the substring to extract, and
defaults to the value of the second argument, or 1.

This example will extract the string FreeM into the local variable M.

SET NAME="FreeM is the best!"
SET M=$EXTRACT(NAME,1,5)

It is also possible to use $EXTRACT on the left-hand side of a SET assignment in order to
modify a substring:

DEFAULT.USER> SET F00="ABCDEFG"

DEFAULT.USER> SET $EXTRACT(F00,1,3)="XYZ"

Chapter 9: Intrinsic Functions 20

DEFAULT.USER> WRITE FOO

XYZDEFG

9.5 $FIND

Finds the character immediately following the first occurence of a substring within a string.
The first argument is the source string.
The second argument is the substring to be located.

The optional third argument indicates the position within the source string at which to
begin searching.

9.6 SFNUMBER

Formats a number according to a particular set of formatting codes.

The first argument is the number to format.

The second argument is the series of formatting codes:

P’ or 'p> Will display negative numbers within parentheses instead of showing a minus
sign.

, (comma) Will add commas as thousands separators.

+ Will include a plus sign for positive numbers. Not compatible with P’ or ’p’.

- Will remove the minus sign from negative numbers. Not compatible with 'p’ or
P

't’ or "I7 WIll place the sign after the number instead of before the number.

The optional third argument is a number indicating how many digits to which the fractional
part of the number will be zero-padded.

9.7 $GET

Returns the value of a local, global, or SSVN if the specified item is defined, or a default
value otherwise.

The first argument is the local, global, or SSVN to be examined.

The optional second argument is the default value to be returned if the referenced item is
undefined, and defaults to the empty string.

9.8 SINSTANCEOF

Returns 1 if the specified lvn is an instance of class class, or 0 otherwise.

The first argument is a string representing a valid FreeM local variable.

The second argument is a string representing a valid FreeM class.
DEFAULT.USER> N STR=$$"%STRING

DEFAULT.USER> W $INSTANCEOF("STR","~%STRING")
1

Chapter 9: Intrinsic Functions 21

9.9 $JUSTIFY
Right-justifies a string based on a specified fixed length.

The first argument is the source string.
The second argument is the character length of the output.

The optional third argument controls the number of fractional digits to be included in the
output, and defaults to the number of digits specified in the first argument.

9.10 SLENGTH

Returns the length of a string, or the number of items in a list delimited by a specified
character (as used by Section 9.14 [$PIECE()], page 22).

The first argument is the source string.

The optional second argument is the list delimiter to be used. When this argument is
omitted, the length of the string in characters is returned.

9.11 $SNAME

Returns the canonical name reference along with some or all of its subscripts.
The first argument is the source name.

The optional second argument indicates the maximum subscript count to be returned, and
defaults to the subscript count of the source name.

9.12 SNEXT

Deprecated. Use $0RDER instead. Returns the next numeric subscript of the specified glvn.
Syntax
$NEXT (glvn)
Example
Assume the following array:

“foo(1)=""
“foo(2)=""

And the following code:
W $ZNEXT("foo(1)) ; => 2

9.13 $SORDER

Returns the previous subscript or next subscript in a local, global, or a subset of structured
system variables.

The first argument is the subscripted local, global, or SSVN.

The optional second argument can be 1 to retrieve the next subscript, or -1 to return the
previous.

Chapter 9: Intrinsic Functions 22

9.14 $SPIECE

Syntazx

$PIECE(s,d[,n[,end]])

Accesses the nth through end d-delimited pieces of string s.

The first argument is the string to be evaluated.

The second argument is the delimiter to be used.

The optional third argument is the first d-delimited piece to access, and defaults to 1.

The optional fourth argument is the final d-delimited piece to access, and defaults to the
value of the third argument (n).

Can be used on the left-hand side of an expression in order to Section 12.27 [SET],
page 43 a value into a d-delimited piece of s, as in:

; “snw="this"is"a"piece"
SET $PIECE("snw,""",2)="isn’t" ; => "this“isn’t"a"piece"

9.15 $QLENGTH

Syntax
$QLENGTH (expr V glvn)
Returns the number of subscripts in glon.
Example
SET SUBCT=$QLENGTH(""GBL(1,2,3)") ; => 3

9.16 $QSUBSCRIPT

Syntax
$QSUBSCRIPT (expr V glvn,expr V n)
In the RHS form, returns the nth subscript of glun.
Example
SET SUB=$QSUBSCRIPT(""GBL(1,2,3)",2) ; => 2
Syntazx
SET $QSUBSCRIPT(expr V glvn,expr V n)=expr ; => ~GBL(1,4,3)
In the LHS form, sets the nth subscript of glon to expr.

9.17 $QUERY

Returns the next subscripted reference in a global.
Syntazx
$QUERY (glvn)
Example
We will assume the following data structure exists:

“snw(1)=1
“snw(1,2)="foo"

Chapter 9: Intrinsic Functions 23

“snw(2)=3
“snw(3)=""

The following code will retrieve the next subscripted name after “snw(1):
SET NEXTNAM=$QUERY(“snw(1)) ; => “snw(1,2)

9.18 SRANDOM

Syntax
$RANDOM (max)

Returns a pseudo-random integer in the range of 0. .max - 1

9.19 SREVERSE

Syntax
$REVERSE(s)
Returns the reverse of string s.
Ezample
SET FOO=$REVERSE("ABC") ; => CBA

9.20 $SELECT

Returns a value corresponding to the first true condition in a list of conditional expressions.
Each argument is an expression, followed by a colon, followed by an expression whose value
will be returned if the first expression is true. If no expressions are true, error condition M4
is raised.

Example
SET FOO=$SELECT(1=2:"math is broken",1=1:"the world makes sense") ; =>

9.21 $STACK

Returns information about the program execution stack. The $STACK intrinsic function has
both a one-argument form and a two-argument form.

Syntaz (One-Argument)

$STACK (<num>)
If num is 0, returns the command with which this FreeM instance was invoked.
If num is -1, returns the current program execution stack level.

If num represents a valid program execution stack depth above 0, returns one of the following
values indicating the reason for which the referenced program execution stack level was
created:

$$ If $STACK (<num>)="$$", program execution stack level num was created as the
result of an extrinsic function call

<m-command>
If $STACK (<num>) returns a valid M command, the referenced program execu-
tion stack level was created as a result of the m-command command.

"the world make

Chapter 9: Intrinsic Functions 24

Syntaz (Two-Argument)
$STACK (<num>, " [ECODE | MCODE | PLACE] ")

Returns the error codes, M program code, or entryref applicable to the action that created
program execution stack level num.

9.22 $TEXT

Returns a line of code from a routine.

9.23 $STRANSLATE

Replaces characters in a string.
The first argument is a string expression representing the text to be changed.
The second argument is a list of characters to replace.

The third argument is a list of characters to use as the replacements for the characters in
the second argument.

Ezample

DEFAULT.USER> W $TRANSLATE("twig","wt","rb")
brig

9.24 $TYPE

Returns a string giving the class of the object specified in the parameter.

See Chapter 25 [Object-Oriented Programming], page 83,

9.25 $VIEW

9.26 $ZBOOLEAN

Performs boolean-operation on numeric arguments A and B.
Syntax

SET RESULT=$ZBOOLEAN(A4, B, boolean-operation)
$ZBOOLEAN Operations (boolean-operation values)

Always false
A AND B

A AND NOT B
A

NOT A AND B
B

A XOR B
AORB

A NOR B

0 N o o> W N = O

Chapter 9: Intrinsic Functions 25

9 A EQUALS B

10 NOT B

11 A OR NOT B

12 NOT A

13 NOT AOR B

14 A NAND B

15 Always true
9.27 $ZCALL
Purpose unknown.

9.28 $ZCRC

Returns a checksum of argl.
Syntax

$ZCRC(argl)

SET VAR=$ZCRC("MUMPS") ; => 86
9.29 $ZDATA

Purpose unknown.

9.30 $ZDATE

Converts a Section 8.6 [$HOROLOG], page 15 string into a human-readable date.
Syntax
SET VAR=$ZDATE($H[,<format-string>])

The optional <format-string> follows the same rules as the UNIX strftime function. If
<format-string> is omitted, the value of ~$SYSTEM("ZDATE_FORMAT") is used (typically %x).

See Section 13.10 ["$SYSTEM], page 63,

9.31 $ZEDIT

Purpose unknown.

9.32 $ZHOROLOG

Converts date and/or time values producible by Section 9.30 [$ZDATE()], page 25 or
Section 9.44 [$ZTIME()], page 27 to Section 8.6 [$HOROLOG], page 15 format.

Syntax

$ZHOROLOG (<date-value>,<format-string>)
<date-value> is a date or time string compatible with the formats from Section 9.30
[$ZDATE()], page 25 or Section 8.35 [$ZTIME], page 18.
<format-string> is a format string of the same format as used by the strptime(3) UNIX
function.

Chapter 9: Intrinsic Functions 26

9.33 $ZKEY

Purpose unknown.

9.34 $ZLENGTH

Purpose unknown.

9.35 $ZLSD

Returns the Levenshtein distance between two arguments. The Levenshtein distance rep-
resents the minimum number of edits needed to change the first argument into the second
argument.

Syntax

SET VAR=$ZLSD(argl,arg2)

Ezample

SET VAR=$ZLSD("KITTENS","MITTENS") ; => 1

9.36 $ZM

Purpose unknown.

9.37 $ZNAME

Purpose unknown.
This function relies on the value of $VIEW(71) being 0 (this is not the default).

9.38 $ZNEXT

Returns a fully-formed variable reference of the next numeric subscript of the specified glvn.
Syntax
$ZNEXT (glvn)
Example
Assume the following array:

“foo(1)=""
~foo(2)=""

And the following code:
W $ZNEXT("foo(1)) ; => ~“foo(2)
This function relies on the value of $VIEW(71) being 1 (this is the default).

9.39 $ZORDER

Purpose unknown.

9.40 $ZPIECE

Purpose unknown.

Chapter 9: Intrinsic Functions 27

9.41 $ZPREVIOUS

Purpose unknown.

9.42 $ZREPLACE

Replaces all instances of arg2 with arg3 in string argl.
Syntar $ZREPLACE(argl,arg2,arg3)

Ezample

SET VAR=$ZREPLACE("CAT","C","B") ; => BAT

9.43 $ZSYNTAX

$ZSYNTAX performs a very basic syntax check on expr V mcode. Checks only for illegal
commands, mismatched brackets, mismatched quotes, missing or surplus arguments, or
surplus commas.

Syntax
$ZSYNTAX (expr V mcode)
If no syntax error is found, returns the empty string.

If a syntax error is found, returns a number indicating the position in expr V mcode at
which the error was found, followed by a comma, and the FreeM error code that was found.

9.44 $ZTIME

Converts a Section 8.6 [$HOROLOG], page 15 string into a human-readable time.
Syntax
SET VAR=$ZTIME($H[,<format-string>])

The optional <format-string> follows the same rules as the UNIX strftime(3) function. If
<format-string> is omitted, the value of ~$SYSTEM("ZTIME_FORMAT") is used (typically %X).

28

10 OBJECT Methods

These methods are part of the ~%0BJECT class, from which all FreeM objects ultimately
inherit.

Please note that classes may override ~%0BJECT methods (or methods of any class) in order
to provide results more fitting to the class’s abstraction goals.

10.1 $$TONUMBER

Returns (when applicable) a canonical numeric representation of the referenced object.
Syntax
W $$MYOBJECT.TONUMBER() , !

If no canonical numeric representation of the object is possible, will return the empty string.

10.2 $$STYPE

Returns the fully-qualified class of the referenced object.
Syntax
W $$MYOBJECT.TYPEQ)

Note that M variables that are created by non-object-oriented means will be objects of the
“%STRING class.

10.3 $$SVALUE

Returns the value of the referenced object.
Syntax
W $$MYOBJECT.VALUE()

29

11 STRING Methods

These are methods inherent to the “%STRING class, which is the default class for M variables
created without specifying a class.

11.1 $$ASCII

Returns the ASCII code of a character within the string. See Section 9.1 [SASCII()], page 19.
Syntax

W $$MYOBJECT.ASCII(3)
The above example returns the ASCII code in position 3 of string object MYOBJECT.

11.2 $$SDATA

Returns the value of the $DATA intrinsic function as performed on the value of the object.
See Section 9.3 [$DATA()], page 19.

Syntax
W $$SMYOBJECT.DATA()

11.3 $$DISTANCE

Returns the Levenstein distance between the string and another string. See Section 9.35
[$ZLSD()], page 26.

Syntaz
W $$MYOBJECT.DISTANCE("someString")

11.4 $SEXTRACT

Returns a substring of the string. See Section 9.4 [SEXTRACT()], page 19.
Syntax
$$<objectName>.EXTRACT (<start>,<end>)

11.5 $SFIND

Finds the character immediately following the first occurence of a substring within a string.
The first argument is the substring to be located.

The second argument is the position within the string at which to begin searching.

See Section 9.5 [SFIND()], page 20.

11.6 $$SFNUMBER

Formats a number according to a set of formatting codes.

The argument is a series of formatting codes. See Section 9.6 [JFNUMBER()], page 20, for
details.

Chapter 11: STRING Methods 30

11.7 $$JUSTIFY

Right-justifies a string based on a specified fixed length.
The first argument is the character length of the output.

The second argument controls the number of fractional digits to be included in the output,
and defaults to the number of digits specified in the first argument.

See Section 9.9 [$JUSTIFY()], page 21, for details.

11.8 $SLENGTH
Returns the length of the string.

11.9 $SPIECECOUNT

Returns the number of items in a list delimited by the character specified in the argument.

11.10 $SPIECE

Syntax

$PIECE(d[,n[,end]])

Accesses the nth through end d-delimited pieces of the string.

The first argument is the delimiter to be used.

The optional second argument is the first d-delimited piece to access, and defaults to 1.

The optional third argument is the final d-delimited piece to access, and defaults to the
value of the third argument (n).

11.11 $$REPLACE
Syntax myString.$$REPLACE (argl, arg2)

Replaces all instances of arg2 with arg3 in myString.

11.12 $$REVERSE

Returns the reverse of the string.

11.13 $$STOLOWER

Returns an all-lowercase version of the string.

11.14 $$STOUPPER

Returns an all-uppercase version of the string.

11.15 $$STRANSLATE

Identical to Section 9.23 [STRANSLATE()], page 24, except that the arguments are shifted
left by one, and the input string is implicit (the object).

31

12 Commands

12.1 @

Executes FreeM code expr V mcode.
Syntax

Q@expr V mcode
Ezample (Using Variable)

DEFAULT.USER> SET FOO="WRITE ""HELLO WORLD"",!"
DEFAULT.USER> QFOO

HELLO WORLD

DEFAULT.USER>
Ezample (Using String Literal)
DEFAULT.USER> Q@"WRITE ""HELLO WORLD"",!"

HELLO WORLD

DEFAULT.USER>
Ezxample (Using Indirection)
DEFAULT.USER> SET F0OO="BAR"

DEFAULT.USER> SET BAR="WRITE ""HELLO WORLD"",!"
DEFAULT.USER> @QFQO
HELLO WORLD

DEFAULT.USER>

12.2 !

FreeM Extension

Invokes a shell to run <ezternal-command> from within FreeM. This temporarily disables
SIGALRM handling in FreeM, which may interrupt the use of event-driven M programming
commands including ESTART and ESTOP.

If the < character is supplied immediately preceding <external-command>, FreeM will ap-
pend the contents of M local variable % to <ezternal-command> as standard input.

If the > character is supplied immediately preceding <external-command>, FreeM will take
the standard output stream of <ezternal-command> and store it in M local variable %.

% contains the number of lines in the input or output. %(1)..%(n) contains the data for
lines 1-n.

Chapter 12: Commands 32

12.3 !

FreeM Extension

Launches a subshell within the FreeM direct mode, allowing the user to run operating
system commands.

DEFAULT.USER> !!

Type Ctrl-D to exit from the shell

$ uname -a

Linux hesperos 4.19.0-17-amd64 #1 SMP Debian 4.19.194-3 (2021-07-18) x86_64 GNU/Linux]]
$ exit

DEFAULT.USER>

12.4 ABLOCK

Increments the event block counter for one or more event classes. While the block counter
for an event class is greater than zero, registered event handlers for that event class will not
execute, and will instead be queued for later execution once the block counter reaches zero
(all blocks removed).

An implicit ABLOCK on all event classes occurs when an event handler subroutine is executing.
As soon as a QUIT is reached within an event handler, an implicit ABLOCK will occur.

Syntax
ABLOCK :postcondition

In its argumentless form, ABLOCK increments the block counter for all event classes, provided
the optional postcondition is either true or omitted.

ABLOCK :postcondition evclassl...,evclassN

In its inclusive form, ABLOCK increments the block counters for all event classes named in
the list, provided the optional postcondition is either true or omitted.

ABLOCK :postcondition (evclassl...,evclassN

In its exclusive form, ABLOCK increments the block counters for all event classes except for
those named in the list, provided the optional postcondition is either true or omitted.

12.5 ASTART

Enables asynchronous event handling for one or more event classes.
Syntax
ASTART : postcondition

In its argumentless form, ASTART enables asynchronous event handling for all event classes,
provided the optional postcondition is either true or omitted.

ASTART :postcondition evclassl...,evclassN

In its inclusive form, ASTART enables asynchronous event handling for all event classes named
in the list, provided the optional postcondition is either true or omitted.

ASTART :postcondition (evclassl...,evclassN)

Chapter 12: Commands 33

In its exclusive form, ASTART enables asynchronous event handling for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

12.6 ASTOP

Disables asynchronous event handling for one or more event classes.
Syntax
ASTOP :postcondition

In its argumentless form, ASTOP disables asynchronous event handling for all event classes,
provided the optional postcondition is either true or omitted.

ASTOP :postcondition evclassl...,evclassN

In its inclusive form, ASTOP disables asynchronous event handling for all event classes named
in the list, provided the optional postcondition is either true or omitted.

ASTOP :postcondition (evclassl...,evclassN)

In its exclusive form, ASTOP disables asynchronous event handling for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

12.7 AUNBLOCK

Decrements the event block counter for one or more event classes.
Syntax
AUNBLOCK : postcondition

In its argumentless form, AUNBLOCK decrements the block counter for all event classes,
provided the optional postcondition is either true or omitted.

AUNBLOCK : postcondition evclassl...,evclassN

In its inclusive form, AUNBLOCK decrements the block counters for all event classes named
in the list, provided the optional postcondition is either true or omitted.

AUNBLOCK : postcondition (evclassl...,evclassN

In its exclusive form, AUNBLOCK decrements the block counters for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

12.8 BREAK

Interrupts running routine to allow interactive debugging.
Syntax
BREAK :postcondition

In its argumentless form, BREAK suspends execution of running code, provided the optional
postcondition is true or omitted.

BREAK :postcondition breakflag
FreeM Extension

In its single-argument form, BREAK enters the interactive debugger or sets Ctrl-C' handling
and error handling characteristics, provided the optional postcondition is true or omitted.
The following table enumerates the possible values of breakflag

"DEBUG" Enters the interactive debugger

Chapter 12: Commands 34

0 Disables Ctri-C handling
-2 Enables normal FreeM error handling
2 Enables Digital Standard MUMPS v2 error handling

any integer value other than 0, 2, or -2

Enables Ctrl-C handling

12.9 CLOSE

Closes an input/output device.
Syntax
CLOSE:postcondition

In its argumentless form, CLOSE closes all I/O devices except for device 0 (the HOME device),
provided the optional postcondition is true or omitted.

CLOSE:postcondition channel

In its single-argument form, CLOSE closes the I/O device associated with channel channel,
provided that channel represents a currently-open device, and the optional postcondition is
true or omitted.

12.10 DO

In its inclusive form, transfers program control to one or more specified subroutines, pro-
vided the optional postcondition evaluates to true or is omitted. Line levels of entryrefs
specified in the argument list must be one, or error M14 is raised.

Syntax
DO[:postcondition] entryref[:postconditionl,...]]

Non-Standard Behavior

FreeM allows DO entryrefs to follow the format of +intexpr. In this case, the
value of intexpr will be interpreted as an offset from the first line of the current
routine.

In its argumentless form, transfers control to the following block of code where the line
level is one greater than the level at which DO was encountered, provided the optional
postcondition evaluates to true or is omitted.

Syntax
DO[:postcondition]

12.11 ELSE

Executes the remainder of the line of code on which ELSE is encountered only if $TEST
evaluates to false, provided the optional postcondition evaluates to true or is omitted.

Syntax
ELSE[:postcondition]

Chapter 12: Commands 35

(N
Non-Standard Behavior

FreeM allows a postcondition on ELSE. While explicitly forbidden in the Stan-
dard, it was decided that FreeM should allow postconditions everywhere, both
for the sake of foolish consistency (the likes of which Emerson warned against),
and for the benefit of entrants to a hypothetical future obfuscated M contest,
and those with a Machiavellian predisposition to wicked perversions and undue
cleverness.

Using postconditions on ELSE should be strictly avoided in production code, as
they have no practical use, and may contribute to technical debt, hardening of
the arteries, hobgoblins, a small mind, a surfeit of logic, climate change, Daily

WTF rants, or the meltdown of global financial markets.
k J

12.12 FOR

In its argumentless form, repeatedly executes the remainder of the line on which FOR was
encountered until a QUIT, GOTO, or end-of-line is encountered, provided the optional post-
condition evaluates to true or is omitted.

Syntax
FOR[:postcondition]

4 I
Non-Standard Behavior

When $DIALECT is set to FREEM, FreeM allows a postcondition on FOR. Much like
postconditions on ELSE and IF, this is explicitly forbidden in the standard. The
expression contained in the postcondition is evaluated on each iteration of the
FOR loop, and if it does not evaluate true, the loop will be immediately exited.
The effect is roughly similar to WHILE constructs present in other languages,
but absent from standard M.

As with all non-standard features of FreeM, please exercise caution when
using this feature, especially in code that is expected to run in other, less

preternaturally-inclined M implementations.
N\ J

In its sentinel form, repeatedly executes the remainder of the line and sets a sentinel variable
on each iteration, provided the optional postcondition evaluates to true or is omitted.

On the first iteration of the loop, glun will be set to initalizer-expression. On each subsequent
iteration, glvn will be incremented by increment-expression, and the loop will terminate
when glun meets or exceeds the value of maz-expression.

Syntax

FOR[:postcondition] glvn=initializer-expression:increment-expression:max-j
expression

Example
DEFAULT.USER> FOR I=1:1:10 WRITE I,!

Chapter 12: Commands 36

© 00 NO 01w

DEFAULT.USER> FOR I=2:2:10 WRITE I,!

w0 O N

10

In its explicit parameter form, a variable is set to each of a series of explicit values, once
per iteration, provided the optional postcondition evaluates to true or is omitted. The loop
terminates when no more values are available.

Syntax
FOR[:postcondition] glvn=expril[,..exprN]
Example
DEFAULT.USER> FOR I=60,"F00",-3,"George",1450,$HOROLOG WRITE I,!

60

FOO

-3

George

1450
66106,52388

12.13 GOTO

Transfers program execution to another line of code, provided the optional postcondition
evaluates to true or is omitted. Attempting to GOTO a different line level or a different block
when the line level of GOTO is greater than one will raise error M45.

Syntax
GOTO[:postcondition] entryref

Non-Standard Behavior

FreeM allows GOTO entryrefs to follow the format of +intexpr. In this case, the
value of interpr will be interpreted as an offset from the first line of the current
routine.

Chapter 12: Commands 37

12.14 HALT

Halts program execution and frees resources allocated during execution, provided the op-
tional postcondition evaluates to true or is omitted.

Syntax
HALT[:postcondition]

12.15 HANG

Temporarily suspends the program for expr seconds, provided the optional postcondition
evaluates to true or is omitted. Values of ezpr that are zero or less than zero are ignored.

Syntax
HANG[:postcondition] expr

Non-Standard Behavior

FreeM supports sub-second values for expr.

12.16 IF

In its argumented form, allows the remainder of the line of code following IF to execute
only if all tvexprs evaluate to true, provided the optional postcondition evaluates to true or
is omitted.

Syntazx
IF[:postcondition] tvexprl,...tvexpr]

In its argumentless form, allows the remainder of the line of code following IF to execute
only if $TEST evaluates to I, provided the optional postcondition evaluates to true or is
omitted.

Syntax

IF[:postcondition] command. ..

Style Recommendation

In the interest of readability and maintainability, we recommend avoiding the
argumentless form of IF in new code. It is an obsolete relic of an era when
routine sizes were severely limited, and can be difficult to spot, as the use of
whitespace (IF command) makes the intent of its use non-obvious at a glance. It
is also far too easy to inadvertently delete the extra space, leading to program
errors easily avoided otherwise.

We recommend explicitly checking the value of $TEST instead, as in IF $TEST
command or command:$TEST ..., as this makes the intent immediately clear
both to M newcomers and seasoned experts, and sacrifices nothing of value,
even on the oldest computer systems where FreeM can be used today.

Chapter 12: Commands 38

12.17 JOB

Executes entryref in a separate process, provided the optional postcondition evaluates to
true or is omitted.

Syntax
JOB[:postcondition] entryrefl[:job-parametersl[:timeout]]

If timeout is supplied, FreeM will set $TEST to I if the child process completes within
timeout seconds.

12.18 KILL

In its inclusive form, KILL deletes the specified gluns and their descendant subscripts, pro-
vided the optional postcondition evaluates to true or is omitted.

Syntax
KILL[:postcondition] glvnl[,...glvn]

In its exclusive form, KILL deletes all local variables except for those specified by lvn,
provided the optional postcondition evaluates to true or is omitted.

Syntax
KILL[:postcondition] (lval[,...lvn])

In its argumentless form, KILL deletes all local variables, provided the optional postcondition
evaluates to true or is omitted.

Syntax
KILL[:postcondition]

12.19 KSUBSCRIPTS

Kills only the descendant subscripts (but not the data value) of a referenced global, local,
or SSVN (where allowed).

Syntax
KSUBSCRIPTS :postcondition varld,...

In the above inclusive form, KVALUE will kill the descendant subscripts at each local, global,
or SSVN node specified in the list (provided that the optional postcondition is true or
omitted), but will leave the data value intact.

Note The below argumentless and exclusive forms of KSUBSCRIPTS are not im-
plemented in FreeM, as of version 0.64.0-rcl, but are planned for a future re-
lease.

KSUBSCRIPTS : postcondition

In the above argumentless form, KSUBSCRIPTS will kill the descendant subscripts at the root
of each local variable (provided that the optional postcondition is true or omitted), but will
leave data values intact.

KSUBSCRIPTS:postcondition (varl,...)

Chapter 12: Commands 39

In the above exclusive form, KSUBSCRIPTS will kill the descendant subscripts of all local vari-
ables, with the exception of those named in the list, provided that the optional postcondition
is true or omitted, while leaving their data values intact.

12.20 KVALUE

Kills only the data value (but not descendant subscripts) of a referenced global, local, or
SSVN (where allowed).

Syntax
KVALUE:postcondition varld,...

In the above inclusive form, KVALUE will kill the data values at each local, global, or SSVN
node specified in the list (provided that the optional postcondition is true or omitted), but
will leave descendant subscripts intact.

Note The below argumentless and exclusive forms of KVALUE are not imple-
mented in FreeM, as of version 0.64.0-rcl, but are planned for a future release.

KVALUE : postcondition

In the above argumentless form, KVALUE will kill the data values at the root of each lo-
cal variable (provided that the optional postcondition is true or omitted), but will leave
descendant subscripts intact.

KVALUE:postcondition (varl,...)

In the above exclusive form, KVALUE will kill the data values of all local variables, with the
exception of those named in the list, provided that the optional postcondition is true or
omitted, while leaving their descendant subscripts intact.

12.21 LOCK

Acquires or releases ownership of names.

In its argumentless form, LOCK releases ownership of all names previously locked by the
current process, provided the optional postcondition evaluates to true or is omitted.

Syntax
LOCK[:postcondition]

In its incremental form, increments or decrements the lock counter for each specified name,
provided the optional postcondition evaluates to true or is omitted. Ownership of each name
is considered to be the current process as long as the lock counter for name is greater than
zero. If timeout is specified, FreeM will wait no more than timeout seconds in attempting
to acquire ownership of name.

If LOCK succeeds within timeout, $TEST is set to 1. Otherwise, $TEST is set to 0.
Syntaz

LOCK[:postcondition] [+|-]namel:timeout] [,...[+|-]namel:timeout]]
Ezample

This example will increment the lock counter for “SNW and decrement the lock counter for
“MJR.

LOCK +~SNW,-"MJR

Chapter 12: Commands 40

In its non-incremental form, LOCK releases all LOCKs held by the current process, and then
attempts to acquire a lock on each name, provided the optional postcondition evaluates to
true or is omitted. If timeout is supplied, FreeM will attempt to lock name for no more
than timeout seconds.

If LOCK succeeds within timeout, $TEST is set to 1. Otherwise, $TEST is set to 0.
Syntax

LOCK[:postcondition] namel:timeout] [,...namel[:timeout]]

12.22 MERGE

Merges the contents of one global, local, or SSVN subtree to another global, local, or SSVN.
Syntax
MERGE A="$J0B

The above example will merge the “$J0B SSVN into the A local. Note that the FreeM
implementation of MERGE does not yet support multiple merge arguments. Returns error
M19 if either the source or the target variable are descendants of each other.

12.23 NEW

In all forms of NEW, name must be a local variable name or NEW-able structured or intrinsic
system variable.

In its inclusive form, NEW saves each specified name on the process stack and removes it,
provided the optional postcondition evaluates to true or is omitted. When the current stack
frame is exited, the previous values are restored.

Syntax
NEW[:postcondition] namel, .. .name]

In its exclusive form, NEW saves all local variables ezcept those named (each name) and
removes them, provided the optional postcondition evaluates to true or is omitted. When
the current stack frame is exited, the previous values are restored.

Syntax
NEW[:postcondition] (namel,...name])

In its argumentless form, NEW saves all local variables and removes them, provided the
optional postcondition evaluates to true or is omitted. When the current stack frame is
exited, the previous values are restored.

Syntax
NEW:postcondition name=expr

In its initializing form, NEW stacks variable name and sets its value to expr, provided the
optional postcondition evaluates to true or is omitted. When the current stack frame is
exited, the previous value is restored.

Syntaz
NEW:postcondition name=$%~CLASS(initializer-list)

In its object-oriented form, NEW creates an instance of class ~CLASS in local variable name
and calls the constructor of ~CLASS, passing initializer-list as its argument(s).

Chapter 12: Commands 41

12.24 OPEN

Opens sequential or socket I/O devices and files and associates them with a numeric FreeM
input/output channel.

Syntax (Sequential Files)
OPEN:postcondition channel:"filename/access-mode"

Opens filename for reading and/or writing, and associates the file with FreeM I/O channel
channel, provided that the optional postcondition is true or omitted. The below table lists
the valid options for access-mode:

r Read-only access

W Create a new file for write access

a Write access; append to existing file

r+ Read/write access

e R
I/O Path

You cannot specify a fully-qualified filesystem path in the FreeM OPEN com-
mand. By default, FreeM will assume that filename exists in the directory
indicated in ~$JOB($J0OB,"CWD"). If you wish to access files in other directo-
ries, you must first set the I/O Path in ~$JOB($JOB, "IOPATH").

The following example will set the I/O path to /etc:

SET ~$JOB($JOB,"IOPATH")="/etc"
- J

If channel was already OPENed in the current process, calling OPEN on the same channel
again implicitly closes the file or device currently associated with channel.

Syntaz (Network Sockets)

Network sockets use a dedicated range of FreeM 1/0 channels ranging from 100-255. OPENing
a socket 1/O channel does not implicitly connect the socket. Connecting the socket to the
specified remote host is accomplished by the /CONNECT control mnemonic supplied to the
USE command.

OPEN:postcondition socket-channel:"hostname-or-address:port:address—-family:connectio
typell
Socket Parameters

socket-channel
The socket I/O channel to use. This must be in the range of 100-255.

hostname-or-address
The hostname or IP address to connect to. If a hostname is supplied, OPEN will
implictly do a name lookup, the mechanism of which is typically determined
by the configuration of /etc/nsswitch.conf on most UNIX and UNIX-like
platforms.

port The TCP or UDP port to which the socket will connect on the remote host.

address-family
The address family to use. Either IPV} or IPV6.

Chapter 12: Commands 42

connection-type
Which connection type to use. Either TCP or UDP.

If you do not specify the address family and connection type, they will default to IPV4 and
TCP, respectively.

12.25 QUIT

QUIT will end execution of the current process level, optionally returning expr, provided the
optional postcondition evaluates to true or is omitted.

QUIT with expr when an argument is not expected will raise error M16; QUIT without expr
when an argument is expected will raise error M17.

Argumentless QUIT may also be used to exit a FOR loop occurring on the same line.
Syntax
QUIT([:postcondition] [expr]

12.26 READ

The READ command takes input from I/O channel $I0 and stores it into specified variables,
provided the optional postcondition evaluates to true or is omitted.

Syntax
READ[:postcondition] read-argumentl[,...read-argument]

Each read-argument may be one of the following:

String Literal
String literal read-arguments will be output to $I0 unmodified.

Format Specifier
One or more of the following:

! (newline)
Advances the cursor down by one line and returns it to the first
column.

(form-feed)
Advances the screen down by $ZROWS and moves the cursor to the
upper-left corner of the screen.

?n (position)
Advances the cursor and $X forward to position n.

Single-Character Read (*variable-namel[:timeout])
Reads one character into variable variable-name. If the optional timeout is
specified, will wait timeout seconds to retrieve one character. If a character is
read within timeout seconds, $TEST will be set to 1. If no character is read
within timeout seconds, $TEST will be set to 0.

Variable-Length Character Read (variable-namel[:timeout])
Reads characters into wvariable-name until the character or character pair in
“$DEVICE(io-channel,"OPTIONS","TERMINATOR") is encountered. If the op-
tional timeout is specified, will wait timeout seconds to retrieve characters. If

Chapter 12: Commands 43

characters are read within timeout seconds, $TEST will be set to 1. If no char-
acter is read within timeout seconds, $TEST will be set to 0.

Fixed-Length Character Read (variable-name#count[:timeout])
Reads count characters into variable-name. If the optional timeout is specified,
will wait timeout seconds to retrieve characters. If characters are read within
timeout seconds, $TEST will be set to 1. If no character is read within timeout
seconds, $TEST will be set to 0.

Control Mnemonic (/control-mnemonicl (argil[,...argh])])
Outputs X3.64 control mnemonic control-mnemonic to $I0. Please see the
appendix on X3.64 Control Mnemonics for more information.

12.27 SET

The SET command places values into one or more variables, provided the optional postcon-
dition evaluates to true or is omitted.

Syntaz

SET[:postcondition] set-argument[=expression | postfix-operator][,...set-{
argument [=expression | postfix-operator]]

Each set-argument can be:
variable-name

A local variable, global variable, writable intrinsic special variable, or writable
structured system variable.

lhs-function
$EXTRACT or $PIECE.

If any grouping of set-arguments is surrounded by parentheses, all set-arguments in the
parenthesized group will be set to the result of expression.

If postfiz-operator is used instead of =expression, the results of applying postfiz-operator to
the set-argument will be stored in set-argument. postfiz-operator may not be used following
a parenthesized group of set-arguments.

Ezample (postfiz-operator)

SET A++,B-- ; increments A, decrements B

12.28 TCOMMIT

Commits all pending transactions to the data files, provided the optional postcondition
evaluates to true or is omitted.

Syntax
TCOMMIT[: postcondition]

12.29 THEN

Saves the value of $TEST until the end of the current line, restoring it at the end of the current
line or when a QUIT is encountered. THEN should be used in all new code in conjunction
with IF.

Chapter 12: Commands 44

Example
IF 1 THEN WRITE "HELLO!'",!

12.30 TROLLBACK

Rolls back all pending transactions for the current process, provided the optional postcon-
dition evaluates to true or is omitted.

Syntax
TROLLBACK [: postcondition]

12.31 TSTART

Introduces a new transaction level, incrementing $TLEVEL, provided the optional postcon-
dition evaluates to true or is omitted. Any global data file operations encountered when
$TLEVEL is greater than zero will not be committed to the global data files until TCOMMIT
is encountered.

If a transaction is restartable, variables in the variables-list will be restored to their original
values on a restart of the transaction.

Syntax
TSTART[:postcondition] <variables-list>:<transaction-parameters>

<variables-list> can be:

O Do not save off any local variables. Makes the transaction non-restartable.

* Save off all local variables. Makes the transaction restartable.

variableName
Saves off only one local variable, wvariableName. Makes the transaction
restartable.

(variableNamel, ... ,variableNameN)

Saves off all local variables listed. Makes the transaction restartable.
<tramsaction-parameters> can be:

S[ERIAL] Forces ACID properties on the transaction. When SERIAL is not selected, trans-
actions occur in batch mode, and no attempt is made to guarantee ACID prop-
erties.

T [RANSACTIONID]=transaction-id
Sets the ID of the transaction to transaction-id

If you are using more than one transaction parameter, surround all of them in parentheses
and separate them with commas, e.g.:

TSTART (F0O,BAR): (SERIAL,TRANSACTIONID="F00")

Chapter 12: Commands 45

12.32 USE
Sets $10 to a particular FreeM 1/O channel, allowing READs from and WRITEs to the associ-
ated terminal, sequential file, or network socket. Also sets various device parameters.
Syntaz (Terminal)
USE:postcondition io-channell:(right-margin:input-field-length:device-
status-word:position:line-terminator:break-key)]
For terminals, t0-channel must be 0.
Semantic and functional description of each device parameter TBA.
Syntaz (Sequential Files)
USE:postcondition io-channell:seek-position:terminator:nodelay)]
For sequential files, io-channel must be in the range 1-99.
Semantic and functional description of each device parameter TBA.
Syntaz (Network Sockets)
USE:postcondition io-channel

The above syntax will set $I0 to io-channel, directing successive READs and WRITEs to
10-channel, provided the optional postcondition is true or omitted.

USE:postcondition io-channel:/CONNECT

The above syntax will set $I0 to to-channel, as in the prior example, but will also attempt
to connect to the host and port specified for i0-channel when it was OPENed. The /CONNECT
control mnemonic is only valid for socket channels whose connection type is TCP. Using
/CONNECT on a UDP socket channel will throw SCKAERR (error code 55).

For network sockets, ¢o-channel must be in the range 100-255.

12.33 VIEW

Provides write access to various FreeM internal parameters, provided the optional postcon-
dition evaluates to true or is omitted.

Syntazx
VIEW[:postcondition] view-number[:view-argument![:view-argument...]]
The view-number argument can be one of the following:
21 - Close All Globals
Closes all global data files open in the current process. Takes no arguments.
Syntax
VIEW 21
52 - Set GO Input Translation Table for $I0
Syntax
VIEW 52:expr V trantab
53 - Set GO Output Translation Table for $I0
Syntax
VIEW 53:expr V trantab

Chapter 12: Commands 46

54 - Set G1 Input Translation Table for $10
Syntax

VIEW 54:expr V trantab
55 - Set G1 Output Translation Table for $I0
Syntax
VIEW 55:expr V trantab
62 - Set $RANDOM Seed Number
Sets the seed number used by $RANDOM to numexpr.
Syntax
VIEW 62:numexpr
63 - Set $RANDOM Parameter A
Sets the number used for $RANDOM Parameter A to numezpr.
Syntazx
VIEW 63:numexpr
64 - Set $RANDOM Parameter B
Sets the number used for $RANDOM Parameter B to numexpr.
Syntax
VIEW 64:numexpr
65 - Set $RANDOM Parameter C
Sets the number used for $RANDOM Parameter C to numexpr.
Syntax
VIEW 65:numexpr
66 - Set or Clear SIGTERM Handling Flag
Enables or disables handling of SIGTERM UNIX signals. If tvexpr evaluates to

1 (true), SIGTERM handling will be enabled. Otherwise, SIGTERM handling will
be disabled.

Syntax
VIEW 66:tvexpr
67 - Set or Clear SIGHUP Handling Flag
Enables or disables handling of SIGHUP UNIX signals. If tvexpr evaluates to 1

(true), SIGHUP handling will be enabled. Otherwise, SIGHUP handling will be
disabled.

Syntax
VIEW 67:tvexpr
70 - Set $ZSORT/$ZSYNTAX Flag
Selects whether $ZS resolves to $ZSORT or $ZSYNTAX.
If tvexpr evaluates to true, selects $ZSYNTAX. Otherwise, selects $ZSORT.
Syntax
VIEW 70:tvexpr

Chapter 12: Commands 47

71 - Set $ZNEXT/$ZNAME Flag
Selects whether $ZN resolves to $ZNEXT or $ZNAME.

If tvexpr evaluates to true, selects $ZNAME. Otherwise, selects $ZNEXT.
Syntax
VIEW 71:tvexpr
72 - Set $ZPREVIOUS/$ZPIECE Flag
Selects whether $ZP resolves to $ZPREVIOUS or $ZPIECE.
If tvexpr evaluates to true, selects $ZPIECE. Otherwise, selects $ZPREVIOUS.
Syntax
VIEW 72:tvexpr
73 - Set $ZDATA/$ZDATE Flag
Selects whether $ZD resolves to $ZDATA or $ZDATE.
If tvexpr evaluates to true, selects $ZDATE. Otherwise, selects $ZDATA.
Syntax
VIEW 73:tvexpr
79 - Set Old ZJOB vs. New ZJOB Flag
If tvexpr evaluates to true, sets the ZJOB mode to new, otherwise, sets it to old.
Syntax
VIEW 79:tvexpr
80 - Set or Clear 8-Bit Flag

If tvexpr evaluates to true, sets FreeM to 8-bit mode. Otherwise, sets FreeM to
7-bit mode.

Syntax
VIEW 80:tvexpr
81 - Set or Clear PF1 Flag

If tvexpr evaluates to true, sets the PF1 flag. We do not yet know what this
does.

Syntax
VIEW 81:tvexpr
83 - Set or Clear Text in $ZERROR Flag
If tverpr evaluates to true, descriptive error messages will be included in

$ZERROR. Otherwise, only the short error code (i.e. ZILLFUN) will be
included in $ZERROR.

Syntax
VIEW 83:tvexpr
92 - Set Type Mismatch Error Flag on EUR2DEM

If tvexpr evaluates to true, a type mismatch error will be thrown in EUR2DEM
currency conversions in certain situations that we do not yet understand.

Syntax
VIEW 92:tvexpr

Chapter 12: Commands 48

93 - Define ZKEY Production Rule
We do not know what this does.

96 - Set Global Prefix
Forces global data filenames to be prefixed with the result of expr.
Syntax
VIEW 96:expr V string
97 - Set Global Postfix
Forces global data filenames to be postfixed with the result of expr.
Syntax
VIEW 97:expr V string
98 - Set Routine Extension
Sets the default extension for M routine filenames to the result of expr.
Syntax
VIEW 98:expr V string
101 - Set ierr

Sets the FreeM internal ierr value to intexpr. Used by some FreeM polyfills
(commands or functions implemented in M code).

Syntazx
VIEW 101:intexpr
102 - Set ierr (Deferred)
Sets the FreeM internal ierr value to intexpr, but only after the current process
stack level is exited. Used by FreeM polyfills to throw an error that will appear

to come from the user’s own code rather than the polyfill implementation M
code.

Syntax
VIEW 102:intexpr
103 - Signal MERGE to ~$WINDOW Complete

Signals FreeM’s MWAPI implementation that a MERGE to ~$WINDOW or descen-
dant subscripts thereof has completed.

Syntax
VIEW 103[:subscript]
110 - Set Local $0RDER/$QUERY Data Value

Sets the local variable $0RDER/$QUERY data value to the result of expr. We're
not entirely sure what this is.

Syntax
VIEW 110:expr
111 - Set Global $0RDER/$QUERY Data Value

Sets the global variable $0RDER/$QUERY data value to the result of exzpr. We're
not entirely sure what this is.

Syntax
VIEW 111:expr

Chapter 12: Commands 49

113 - Set termio Information
We don’t know what this does.

133 - Remember ZLOAD Directory on ZSAVE
We don’t know what this does, but it takes a tvexpr.

Syntax
VIEW 133:tvexpr

12.34 WRITE
12.35 XECUTE

12.36 ZASSERT

FreeM Extension

Triggers error ZASSERT if the supplied truth-valued expression tvexpr is false (1 is true, and
0 is false), and that the optional postcondition evaluates to true or is omitted.

The ZASSERT error is catchable whether using standard-style, FreeM-style, or DSM 2.0-style
error processing.

Syntax
ZASSERT : postcondition <tvexpr>
Ezample
DEFAULT.USER> SET DEBUG=1

DEFAULT.USER> ZASSERT:DEBUG 1=1
DEFAULT.USER> ZASSERT:DEBUG 1=0

>> Error ZASSERT: programmer assertion failed in SYSTEM:: %SYSINIT [$STACK = O]}
>> ZASSERT:DEBUG 1=0

12.37 ZBREAK
FreeM Extension
Sets or clears the ZBREAK flag!, based on the result of evaluating tvexpr.
Syntaz
ZBREAK tvexpr

! NOTE: FreeM team needs to investigate how zbreakon and zbflag affect program execution.

Chapter 12: Commands 50

12.38 ZCONST

FreeM Extension

Defines a local constant, or variable that cannot be altered after its initial definition, pro-
vided the optional postcondition is true or omitted.

Constants must only be locals, and globals are not supported.
Syntax

ZCONST :postcondition mrefl=initial-valuel,...,mrefN=initial-valueN

12.39 ZGOTO
FreeM Extension
In its argumented form, enables BREAK mode and branches unconditionally to entryref.
Syntax
2GOTO entryref
In its argumented form, resumes execution after a BREAK.
Syntax
Z2GOTO

12.40 ZHALT

FreeM Extension

In its single-argumented form, ZHALT command is used to exit the FreeM process with a
specific return value intexpr.

Syntax

ZHALT intexpr
In its argumentless form, ZHALT is synonymous with HALT.
Syntax

ZHALT

12.41 ZINSERT

FreeM FExtension

12.42 ZJOB

FreeM Extension

When ZJOB is used, the semantics are identical to JOB, with the exception that the timeout
is forced to be 0, regardless of what the user specifies.

For more information, see JOB.

Chapter 12: Commands 51

12.43 ZLOAD

FreeM Extension

Loads routine <routine-name> into FreeM’s routine buffer, provided the optional postcon-
dition is true or omitted.

Syntax

ZLOAD:postcondition <routine-name>

12.44 ZMAP

Maps global name gvn to be mapped to the non-default namespace expr V namespace,
provided the optional postcondition evaluates to true or is omitted.

Syntax
ZMAP [:postcondition] GLOBAL gvn=expr V namespace

12.45 ZNEW

FreeM FExtension

12.46 ZPRINT

FreeM Extension

Prints the contents of the current routine buffer, provided the optional postcondition is true
or omitted.

Syntaz
ZPRINT :postcondition

12.47 ZQUIT

FreeM Extension

In its single-argument form, quits from levels levels of the stack, provided the optional
postcondition is true or omitted.

In its argumentless form, quits from $STACK levels of the stack, provided the optional
postcondition is true or omitted.

Syntax
ZQUIT:postcondition [levels]

12.48 ZREMOVE

FreeM Extension

12.49 ZSAVE

FreeM FExtension

Chapter 12: Commands 52

12.50 ZTHROW

FreeM Extension
Raises an error condition as long as the optional postcondition is true or omitted.
Syntax
ZTHROW:postcondition expr V error-code
Ezample
ZTHROW "M102"

12.51 ZTRAP

FreeM Extension
Synonymous with Section 12.50 [ZTHROW], page 52.

12.52 ZUNMAP

Removes any mapping connecting gun to a non-default namespace, provided the optional
postcondition evaluates to true or is omitted.

Syntax
ZUNMAP GLOBAL gvn

12.53 ZWATCH

FreeM Extension
Sets a watchpoint on a global, local, or SSVN node.
Syntax

In its argumentless form, ZWATCH toggles watchpoints on and off, provided the optional
postcondition is true or omitted.

ZWATCH[: postcondition]

In its inclusive form, ZWATCH adds, removes, or examines watchpoints, provided the optional
postcondition is true or omitted.

A + adds a new watchpoint to the following variable.

A - removes an existing watchpoint for the following variable.

A 7 examines the status of a watchpoint for the following variable.
ZWATCH[:postcondition] [+|-|7]varl...,[+|-|?]varN

The following example demonstrates turning watchpoint processing on and adding a watch-
point for global variable “snw(1). It then changes the value of “snw(1).

DEFAULT.USER> ZWATCH
Watchpoints enabled.
DEFAULT.USER> ZWATCH +~SNW(1)

Added °~SNW("1")’ to the watchlist.

Chapter 12: Commands 53

DEFAULT.USER> SET “SNW(1)="new value"

>> WATCHPOINT: ~SNW("1") => ’new value’ (changed 1 times)

The following example will remove that watchpoint:
DEFAULT.USER> ZWATCH -"SNW(1)

Removed ’>~SNW("1")’ from the watchlist.
DEFAULT.USER> ZWATCH ?~SNW(1)

>"SNW("1")’ is not being watched.

12.54 ZWITH

FreeM Extension
NOTE: This command may be deprecated and removed in future FreeM releases.
Sets a prefix to be applied to all subsequent local variable or constant references.
Syntax

ZWITH:postcondition var-prefix

In the above single-argument form, sets the $WITH prefix to var-prefiz, provided that the
optional postcondition is either true or omitted.

The var-prefiz argument may be a string literal or any valid FreeM expression.
ZWITH:postcondition

In the above argumentless form, clears the $WITH prefix, provided the optional postcondition
is either true or omitted. Equivalent to ZWITH "".

12.55 ZWRITE

FreeM Extension
Writes the names and values of M variables to $I0.
Syntax

ZWRITE:postcondition

In the argumentless form, writes the names and values of all local variables to $I0 if the
optional postcondition is true or omitted.

ZWRITE:postcondition ArrayName,. ..

In the inclusive form, writes the names and values of all local, global, or structured system
variables specified in the list of ArrayNames to $I0 if the optional postcondition is true or
omitted.

ZWRITE:postcondition (ArrayName,...)

In the exclusive form, writes all local variables except those specified in the list of Array-
Names to $10 if the optional postcondition is true or omitted.

54

13 Structured System Variables

SSVN subscripts are each described in the following format:

<ssvn-subscript-name> +/-R +/-U +/-D

The R, U, and D flags represent Read, Update, and Delete. A minus sign indicates that
the given operation is not allowed, and a plus sign indicates that the given operation s
allowed.

13.1 "$CHARACTER

Exposes character set information. As FreeM currently only supports the M character set,
the first subscript of “$CHARACTER must always be "M".

The following values for the second subscript are supported:

IDENT +R -U -D
Returns the empty string.

COLLATE +R -U -D
Returns the empty string.

INPUT +R -U -D
Returns the empty string if the third subscript is M, otherwise, raises error M38.

OUTPUT +R -U -D
Returns the empty string if the third subscript is M, otherwise, raises error M38.

13.2 "$DEVICE

FreeM implements several important pieces of functionality in the “$DEVICE SSVN.
The first subscript of “$DEVICE represents the I/O channel of an OPENed device.

The following values for the second subscript are supported:
$DEVICE Returns the value of $DEVICE for the specified I/O channel.
$x +R -U -D

Returns the horizontal cursor position of a terminal device. Only valid if the
I/O channel is 0.

$Y +R -U -D
Returns the vertical cursor position of a terminal device. Only valid if the I/O
channel is 0.

ROWS +R -U -D
Returns the number of character rows on the terminal device. Only valid if the
I/O channel is 0.

COLUMNS +R -U -D
Returns the number of character columns on the terminal device. Only valid if
the I/O channel is 0.

CHARACTER +R -U -D
Returns the character set of the specified I/O channel; always M in the current
implementation.

Chapter 13: Structured System Variables 55

INPUT_BUFFER +R +U -D
Returns or sets the contents of the input buffer for the specified I/O channel.
Data populated in this node will remain in the buffer until subsequent READ
command(s) remove it. This can be used to perform input buffer stuffing, i.e.,
to fill out an interactive form programmatically.

NAME +R -U -D
Returns the operating system’s name for the file, device, or socket attached to
the specified I/O channel.

FD+R -U -D
Returns the UNIX file descriptor of the specified I/O channel.

MODE +R -U -D
Returns one of READ, WRITE, READWRITE, or APPEND, depending on the mode in
which the specified I/O channel was opened.

EOF +R -U -D
Returns 1 if the I/O channel has encountered an end-of-file condition; 0 other-
wise. Only valid if the I/O channel is connected to a sequential file.

LENGTH +R -U -D
Returns the length of the file connected to the I/O channel. Only valid if the
I/0O channel is connected to a sequential file.

NAMESPACE +R -U -D
Returns the current mnemonic-space in use for the referenced I/O channel.
Always X364 for terminals and blank for sequential files.

TYPE +R -U -D
Returns either 1,FILE, 2,S0CKET, or 4, TERMINAL, depending on the device type
associated with the specified I/O channel.

OPTIONS -R -U -D
The following subscripts reside beneath ~“$DEVICE (<io-channel>, "OPTIONS"),
and this subscript may not be accessed without one of the following third-level
subscripts being specified:

DSW +R +U -D
Sets or returns the current Device Status Word controlling terminal
characteristics. Only valid for I/O channel 0.

TERMINATOR +R +U -D
Sets or returns the READ terminator for the specified I/O channel.
Must be either $C(13,10) or $C(10). Currently only supported
for socket devices (those having an I/O channel of 100-255).

TERMID +R -U -D
Returns the type of terminal connected to channel 0. Only valid
for I/O channel 0.

ECHO +R +U -D
Enables or disables local echo of characters typed in a READ com-
mand. Only valid for I/O channel 0. Corresponds to bit 0 of the
Device Status Word.

Chapter 13:

Ezample

Structured System Variables 56

DELMODE +R +U -D
Enables or disables visual backspace during a READ command. Only
valid for I/O channel 0. Corresponds to bit 2 of the Device Status
Word.

ESCAPE +R +U -D
Enables or disables escape sequence processing during a READ com-
mand. Only valid for I/O channel 0. Corresponds to bit 6 of the
Device Status Word.

CONVUPPER +R +U -D
Enables or disables automatic conversion to uppercase of alphabet-
ical characters during a READ command. Only valid for I/O channel
0. Corresponds to bit 14 of the Device Status Word.

DELEMPTY +R +U -D
Enables or disables the automatic deletion of empty strings supplied

to a READ command. Only valid for I/O channel 0. Corresponds to
bit 19 of the Device Status Word.

NOCTRLS +R +U -D
TBD. Only valid for I/O channel 0. Corresponds to bit 20 of the
Device Status Word.

CTRLOPROC +R +U -D
Enables or disables Ctrl-O processing during READ commands.
Only valid for I/O channel 0. Corresponds to bit 21 of the Device
Status Word.

NOTYPEAHEAD +R +U -D
Enables or disables typeahead buffering during READ commands.
Only valid for I/O channel 0. Corresponds to bit 25 of the Device
Status Word.

The following example M code opens /etc/freem.conf and reads its contents line-by-line
until the end of the file is reached.

SET ~$J0B($J0B, "IOPATH")="/etc" ; set I/0 path to /etc
OPEN 1:"freem.conf/r" ; open freem.conf for reading

; read until we run out of lines

FOR USE 1 READ LINE USE O QUIT: $DEVICE(1,"EOF") D

. WRITE LINE,!

CLOSE 1

QUIT

Chapter 13: Structured System Variables 57

13.3 "$DISPLAY

Provides information about the specified graphical display. The first subscript corresponds
to a display number, which is an integer value, often corresponding to the current value of
the $PDISPLAY ISV.

The following second-level subscripts and specified descendant subscripts are supported:

CLIPBOARD +R +U +D
Retrieves, sets, or erases the contents of the system clipboard.

PLATFORM +R -U -D
Retrieves the name and version of the underlying window system platform.

SIZE +R -U -D
Retrieves the display resolution of the specified graphical display. For instance,
a 1080p display would have a SIZE value of 1920, 1080.

SPECTRUM +R -U -D
Retrieves the color depth (number of colors supported) of the specified graphical
display.

COLORTYPE +R -U -D
Always returns COLOR, as monochrome and grayscale displays are not yet sup-
ported in FreeM.

UNITS +R -U -D
Returns the measurement unit of the specified display, i.e., PIXEL.

TYPEFACE +R -U -D
The third-level subscripts beneath this subscript represent a list of font families
available on this display. The fourth level subscript is a list of sizes supported for
the specified typeface, or 0 for vector typefaces, such as TrueType, OpenType,
and Adobe Type 1 fonts.

13.4 "SEVENT
The “$EVENT SSVN is not yet implemented.

13.5 "$GLOBAL

The ~$GLOBAL structured system variable provides information about M globals. The first-
level subscript is a global name, sans the leading caret symbol.

The following second-level subscripts are supported:

BYTES +R -U -D
Returns the number of bytes this global occupies in fixed storage.

BLOCKS +R -U -D
Returns the number of blocks contained in this global.

BLOCKSIZE +R -U -D
Returns the size of data blocks for this global. Currently, FreeM only supports
1024-byte blocks.

Chapter 13: Structured System Variables 58

FILE +R -U -D
Returns the full filesystem path to the data file where this global resides in fixed
storage.

NAMESPACE +R +U +D
Returns or sets the name of the FreeM namespace to which this global belongs.
SETting this node creates a mapping for the specified global name to a non-
default namespace. KILLing this node restores the mapping configuration for
the specified global to the default.

13.6 “$JOB

FreeM fully implements ~$JOB per ANSI X11.1-1995, as well as several extensions proposed
in the M Millennium Draft Standard.

The first subscript of “$J0B represents the $J0B of the process.

If you KILL a first-level subscript of “$JOB, the SIGTERM signal will be sent to the corre-
sponding UNIX process, causing pending transactions to be rolled back and the process to
be terminated. If the targeted process is in direct mode, the user will be prompted with
options of either rolling back or committing any pending transactions.

The following subscripts are supported:

GVNDEFAULT +R +U +D
Contains a default expression to be evaluated if a global variable access attempt
results in an M7 error.

Equivalent to wrapping all global accesses in $GET(global-name,string-
expr).

LVNDEFAULT +R +U +D
Contains a default expression to be evaluated if a local variable access attempt
results in an M6 error.

Equivalent to wrapping all local accesses in $GET (global-name, string-expr).

LVNQOVAL +R +U +D
Contains the data value (if any) at the subscripted local variable reference from
the most recent $0RDER or $QUERY operation.

This node is useful for code that uses $0RDER or $QUERY heavily in loops that
retrieve successive data values, as it will prevent an additional symbol table
scan that would result from retrieving the data value in the usual way, thus
improving application performance. However, this optimization comes at the
cost of compatibility with other M implementations.

GVNQOVAL +R +U +D
Contains the data value (if any) at the subscripted global variable reference
from the most recent $0RDER or $QUERY operation.

This node is useful for code that uses $0RDER or $QUERY heavily in loops that
retrieve successive data values, as it will prevent an additional data file scan
that would result from retrieving the data value in the usual way, thus improv-
ing application performance. However, this optimization comes at the cost of
compatibility with other M implementations.

Chapter 13: Structured System Variables 59

ZCOMMANDS +R +U -D
Contains a space-delimited list of Z-commands to be treated as intrinsic. Any
Z-command not appearing in this list will be treated as a user-defined command.

For instance, if command ZFOO does not appear in this list, FreeM will at-
tempt to run ~%ZF00 as a subroutine when the ZFO0 command is encountered
in program code.

If you remove a command from this list, you may provide your own private M
implementation of the command in the manner described above.

If an argument is passed to a Z-command you implement in M, it is
made available to your M code in a variable whose name is specified in
~$JOB($J0OB, "ZCOMMAND_ARGUMENT_NAME"), which defaults to %.

PIPE_GLVN +R +U -D
Contains an M local or global variable to be used as standard input or standard
output for the external shell commands run by !'< and !>.

ZCOMMAND_ARGUMENT_NAME +R +U -D
Returns or sets the variable name in which arguments to user-defined
Z-commands are passed. Defaults to %.

ZFUNCTIONS +R +U -D
Contains a space-delimited list of Z functions to be treated as intrinsic. Any
Z function not appearing in this list will be treated as a user-defined extrinsic
function.

For instance, if function $ZF00 does not appear in this list, FreeM will attempt
to return the value of $$°%ZF00 called as an extrinsic function.

If you remove a function from this list, you may provide your own private M
implementation of the function in the manner described above.

Z3Vs +R +U -D
Contains a space-delimited list of Z special variables to be treated as intrinsic.
Any Z special variable not appearing in this list will be treated as a user-defined
extrinsic function taking no arguments.

For instance, if the special variable $ZF00 does not appear in this list, FreeM
will attempt to return the value of $$°%ZF00 called as an extrinsic function.

If you remove a built-in special variable from this list, you may provide your
own private M implementation of the special variable in the manner described
above.

BREAK_HANDLER +R +U -D
Contains M code to be executed when the BREAK command is run.

ROUTINE_BUFFER_SIZE +R +U -D
Returns or sets the number of bytes allocated to each routine buffer. If
ROUTINE_BUFFER_AUTO_ADJUST is set to O, this determines the maximum size
of routines that FreeM will execute.

Chapter 13: Structured System Variables 60

ROUTINE_BUFFER_COUNT +R +U -D
Returns or sets the number of routine buffers that FreeM will store in memory
concurrently. Raising this value will increase memory usage, but will also in-
crease performance if your applications call many different routines repeatedly.

ROUTINE_BUFFER_AUTO_ADJUST +R +U -D
Determines whether or not the size of routine buffers will be automatically ad-
justed at runtime. If set to 0, routine buffers will be fixed to the byte size spec-
ified in ROUTINE_BUFFER_SIZE and may be manually resized using ROUTINE_
BUFFER_SIZE. If set to 1, routine buffers will grow automatically as necessary.

SYMBOL_TABLE_SIZE +R +U -D
Returns or sets the number of bytes allocated to each of the two FreeM symbol
tables. If SYMBOL_TABLE_AUTO_ADJUST is 1, this value is treated as a default,
initial size. If SYMBOL_TABLE_AUTO_ADJUST is O, this value controls the fixed
size of the two symbol tables.

SYMBOL_TABLE_AUTO_ADJUST +R +U -D
Determines whether or not the size of the two FreeM symbol tables will be
automatically adjusted at runtime. If set to 0, the symbol table will be fixed
to the byte size specified in SYMBOL_TABLE_SIZE and may be manually resized
by modifying SYMBOL_TABLE_SIZE. If set to 1, the two symbol tables will grow
automatically as necessary.

USER_DEFINED_ISV_TABLE_SIZE +R +U -D
Returns or sets the number of bytes allocated to the FreeM user-defined intrinsic
special variable table. If USER_DEFINED_ISV_TABLE_AUTO_ADJUST is 1, this
value is treated as a default, initial size. If USER_DEFINED_ISV_TABLE_AUTO_
ADJUST is 0, this value controls the fixed byte size of the user-defined intrinsic
special variable table.

USER_DEFINED_ISV_TABLE_AUTO_ADJUST +R +U -D
Determines whether or not the size of the FreeM user-defined intrinsic special
variable table will be automatically adjusted at runtime. If set to 0, the user-
defined ISV table will be fixed to the byte size specified in USER_DEFINED_ISV_
TABLE_SIZE and may be manually resized by modifying USER_DEFINED_ISV_
TABLE_SIZE. If set to 1, the user-defined ISV table will grow automatically as
necessary.

GVN_UNIQUE_CHARS +R +U -D
Returns or sets the number of characters of a global name that make it unique,
from 1 to 255.

GVN_CASE_SENSITIVE +R +U -D
Returns or sets the case sensitivity of global names. If set to 0, global names
are case-insensitive. If set to 1, global names are case-sensitive.

GVN_NAME_SUB_LENGTH +R +U -D
Returns or sets the maximum number of characters of a global name plus all of
its subscripts, from 1-255.

Chapter 13: Structured System Variables 61

GVN_SUB_LENGTH +R +U -D
Returns or sets the maximum number of characters of a single global subscript,
from 1-255.

SINGLE_USER +R +U -D
If set to 1, FreeM will skip all file locking operations on globals. If set to O,
FreeM will enforce file locking on both.

Setting SINGLE_USER to 1 will improve FreeM performance, but you must ONLY
use this on systems where you are absolutely sure that only one FreeM process
will run at any given time, as running multiple instances of FreeM concur-
rently when any of them are set to SINGLE_USER mode will cause global data
corruption.

CHARACTER +R -U -D
Returns the character set of the job.

CwD +R +U -D
Returns or sets the current working directory of the job.

OPEN +R -U -D
The ~$JOB($J0B, "OPEN",<channel> subscripts list the open I/O channels in
the specified job.

BERKELEYDB,FLUSH_THRESHOLD +R +U -D
Returns or sets the number of write operations that will be cached in the Berke-
leyDB global handler prior to flushing BerkeleyDB’s cache to disk.

EVENT +R +U +D
The subtree contained under ~$JOB($J,"EVENT") defines asynchronous event
handlers for the current job. Please see Asynchronous Event Handling for more
information.
GLOBAL +R -U -D
Returns the global environment of the job.
I0PATH +R +U -D
Returns or sets the I/0 path to be used by the OPEN command.
PRIORITY +R +U -D
Returns or sets the nice value of the FreeM job.
REVSTR +R +U -D
When set to 1, allows $EXTRACT to accept negative values.
ROUTINE +R -U -D
Returns the name of the routine currently being executed by the job.
SYMTAB +R +U -D
Returns or sets the current local variable symbol table in use.

FreeM supports two unique and independent symbol tables, allowing FreeM
programs to maintain two independent sets of identically- or differently-named
local variables per process.

The default symbol table is 0, and the alternate symbol table is 1, corresponding
to the valid values for ~$J0OB($JOB, "SYMTAB").

Chapter 13: Structured System Variables 62

Setting this subscript to values other than 0 or 1 will result in a ZINVEXPR error.

$PDISPLAY +R -U -D
Returns the value of $PDISPLAY for the job.

$PRINCIPAL +R -U -D
Returns the value of $PRINCIPAL for the job.

$TLEVEL +R -U -D
Returns the current transaction level (value of $TLEVEL for the job.

$10 +R -U -D
Returns the current value of $I0 for the job.
USER +R -U -D

Returns the UID of the user owning the job.

GROUP +R -U -D
Returns the GID of the group owning the job.

NAMESPACE +R +U -D
Returns or sets the name of the job’s currently-active namespace.

MATH +R +U -D
Returns or sets the mode in which decimal comparisons and arithmetic calcu-
lations are conducted. Valid values are FIXED, for fixed-point decimals having
up to 20,000 digits of precision, as determined by the $ZPRECISION intrinsic
special variable, and IEEE754, to use IEEE 754 floating-point decimals. When
in IEEE754 mode, floating-point numbers support up to 16 digits of numeric
precision.
IEEE754 mode will make mathematical calculations significantly faster, espe-
cially when accelerated by a floating-point processor, at the expense of precision
and accuracy.
FIXED mode is recommended for financial calculations, or where precision and
accuracy are valued over performance. FIXED is the default mode of FreeM
operation.
Attempting to SET this node to values other than FIXED or IEEE754 will set
$ECODE to M29.

13.7 "$LOCK

The first-level subscript of “"$LOCK is a lock name. The value at each node is the PID which
owns the lock, a comma, and the lock counter for the locked resource.

Attempting to SET or KILL any node in ~$LOCK will raise error M29.

13.8 "$OBJECT

13.9 "$SROUTINE

The “$ROUTINE SSVN exposes a list of routines available in the current FreeM namespace,
as well as additional attributes further describing each routine.

Chapter 13: Structured System Variables 63

The first-level subscript is the name of a FreeM routine minus the leading caret symbol.
The following second-level subscripts are supported:

CHARACTER +R -U -D
Returns the character set of the routine.

NAMESPACE +R -U -D
Returns the name of the FreeM namespace in which the routine resides.

PATH +R -U -D
Returns the full filesystem path to the routine in fixed storage.

13.10 "$SYSTEM
The ~$SYSTEM SSVN exposes system-level implementation details.

The following first-level subscripts are supported:
DEFPSIZE +R -U -D

Returns the default size in bytes of the symbol table and routine buffer memory
partition.

DEFUDFSVSIZ +R -U -D
Returns the default size in bytes of the user-defined intrinsic special variable
table.

DEFNSIZE +R -U -D
Returns the default size of the NEW stack, in number of entries.

MAXNO_OF_RBUF +R -U -D
Returns the maximum number of routine buffers.

DEFNO_OF_RBUF +R -U -D
Returns the default number of routine buffers.

DEFPSIZEO +R -U -D
Returns the default size in bytes of each routine buffer.

NO_GLOBLS +R -U -D
Returns the maximum number of globals that can be concurrently opened.

NO_OF_GBUF +R -U -D
Returns the number of global buffers.

NESTLEVLS +R -U -D
Returns the depth of the DO, FOR, XECUTE stack.

PARDEPTH +R -U -D
Returns the maximum depth of the parser’s parameter stack.

PATDEPTH +R -U -D
Returns the maximum number of patatoms in each pattern.

TRLIM +R -U -D
Returns the trace limit of the BUILTIN global handler.

Chapter 13: Structured System Variables 64

ARGS_IN_ESC +R -U -D
Returns the maximum number of arguments in a terminal escape sequence.

ZTLEN +R -U -D
Returns the maximum length of $ZTRAP.

FUNLEN +R -U -D
Returns the maximum length of the $ZF (function key) variable.

NAME_LENGTH +R -U -D
Returns the maximum length of variable names in the current FreeM build.
Compatible with the same SSVN node in Reference Standard M

STRING_MAX +R -U -D
Returns the maximum length of character strings in the current FreeM build.
Compatible with the same SSVN node in Reference Standard M

$NEXTOK +R -U -D
Returns a value indicating whether or not the $NEXT intrinsic function is al-
lowed. In FreeM, $NEXT is always enabled, and this SSVN is provided solely
for compatibility with Reference Standard M. Thus, this SSVN node always
returns 1.

EOK +R -U -D
Returns a value indicating whether or not E notation for exponents is allowed.
In FreeM, this feature is always enabled, and this SSVN is provided solely for
compatibility with Reference Standard M. Thus, this SSVN node always returns
1.

OFFOK +R -U -D
Returns a value indicating whether or not offsets are allowed in DO and GOTO.
In FreeM, this feature is always enabled, and this SSVN is provided solely for
compatibility with Reference Standard M. Thus, this SSVN node always returns
1.

BIG_ENDIAN +R -U -D
Returns a 1 if FreeM is running on a big-endian platform, or a 0 otherwise.
Compatible with the same SSVN node in Reference Standard M.

NAMESPACE +R -U -D
The descendant subscripts of this node list each namespace in the current FreeM
environment.

MAPPINGS,GLOBAL +R -U -D
Descendant subscripts of this node represent global name mappings set in
"$GLOBAL (gvn, "NAMESPACE")

13.11 "$WINDOW

The ~$WINDOW SSVN has no nodes yet defined. However, completing a MERGE to this

SSVN will cause MWAPI-ish things to happen, and further work is proceeding on MWAPI
implementation.

Chapter 13: Structured System Variables 65

13.12 "$ZPROCESS

Provides access to procfs, which is a filesystem-like abstraction for UNIX process metadata
contained in /proc, as well as features for examining and controlling the state of processes
external to the FreeM interpreter.

The first subscript always represents the process ID of the external process being acted
upon.

The following values for the second subscript are supported:

EXISTS +R -U -D
Returns 1 if the referenced process exists; 0 otherwise.

ATTRIBUTE +R -U -D
Exposes the /proc files as descendant subscripts, i.e., WRITE
~$ZPROCESS (2900, "ATTRIBUTE","cmdline"),! would print the initial
command line used to invoke process ID 2900. Note that the third subscript
(the immediate descendant of the ATTRIBUTE subscript) is case sensitive.

SIGNAL -R +U -D
Allows signals to be sent to the referenced process. The following subscript is
an integer value corresponding to the desired signal number. You may obtain
a list of signal numbers on most UNIX systems with the command kill -1.

The constants %SYS.SIGNAL.HUP, %SYS.SIGNAL.INT, %SYS.SIGNAL.KILL, and
%SYS.SIGNAL.TERM are provided for convenient use of this SSVN subscript.

13.13 "$ZRPI

The ~$ZRPI structured system variable provides easy access to general-purpose
input/output (GPIO) pins on Raspberry Pi single-board computers.

To initialize the GPIO subsystem, SET ~$ZRPI ("INITIALIZE")=1.

Individual pins are accessed through ~$ZRPI("GPIO",<pin>,...), where <pin> represents
the desired pin number. Descendant subscripts of “$ZRPI("GPI0",<pin>) are as follows:

MODE +R +U -D
Represents the operating mode of the selected pin. One of INPUT, OUTPUT,
PWM_OUTPUT, or GPIO_CLOCK.

DIGITAL +R +U -D
Reads or writes the selected pin digitally. The value is limited to 1 or 0.

ANALOG +R +U -D
Reads or writes the selected pin in an analog fashion. The value represents
analog voltage.

66

14 Operators

14.1 Unary +

Forces a number to positive, whether positive or negative. Also forces numeric coercion of
strings.

14.2 Unary -

Forces a number to negative, whether positive or negative. Also forces numeric coercion of
strings.

14.3 + (Add)

Syntax
S X=1+2 ; => 3
Adds numbers together.

14.4 += (Add/Assign)

Syntax

S X=5
S X+=3 ; => 8

Increments the variable on the LHS by the value on the RHS.

14.5 ++ (Postfix Increment)

Increments a variable by 1.

14.6 - (Subtract)

Subtracts one number from another.

14.7 -= (Subtract/Assign)

Syntax

S X=b
S X-=3 ; => 2

Decrements the variable on the LHS by the value on the RHS.

14.8 — (Postfix Decrement)

Decrements the variable by one.

14.9 * (Multiply)

Multiplies one number by another.

Chapter 14: Operators

14.10

14.11

14.12

14.13

14.14

14.15

14.16

14.17

14.18

14.19

14.20

14.21

14.22

14.23

14.24

14.25

14.26

14.27

14.28

14.29

*= (Multiply/Assign)

/ (Divide)

/= (Divide/Assign)

\ (Integer Divide)

\= (Integer Divide/Assign)
(Modulo)

#= (Modulo/Assign)

** (Exponentiate)

**— (Exponentiate/Assign)
< (Less Than)

<= (Less Than or Equal To)
> (Greater Than)

>= (Greater Than or Equal To)
_ (Concatenate)

_= (Concatenate/Assign)

= (Equals)

[(Contains)

] (Follows)

] (Sorts After)

? (Pattern Match)

67

Chapter 14: Operators

14.30 & (Logical AND)
14.31 ! (Logical OR)
14.32 ’ (Logical NOT)

14.33 @ (Indirect)

68

69

15 Routines

A routine is a file containing M source code to be processed by FreeM.

Routines exist within a namespace (such as SYSTEM or USER), which in turn exist within an
environment (such as DEFAULT).

15.1 Routine Naming
The routine’s filename follows the format NAME.m, where NAME is the name of the routine,
and .m is the filename extension.
Routine naming rules are as follows:
e Routine names must begin with an upper- or lower-case letter, or a % sign
e Within the routine name, you may have upper-case or lower-case letters or digits
e The entire routine name must not be longer than 255 characters

Routines whose names begin with % must be located in the SYSTEM namespace. Other
routines may be located in any namespace.

70

16 Types

FreeM supports all libdatatype types defined in the former MDC’s Millennium Draft Stan-
dard, with the exception of MATRIX, and with extensions supporting object-oriented pro-
gramming. A notable enhancement in FreeM is that the library data types can be used in
the formallist of any extrinsic function or subroutine; not only in libraryelements.

16.1 BOOLEAN
The BOOLEAN type represents any M value that can be interpreted as a truth-value.

16.2 COMPLEX

The COMPLEX type is a complex number represented as a string in the format <real-
part>/<imaginary-part>, where real-part and imaginary-part are both REAL numbers.
See Section 16.4 [REAL], page 70, for more information.

FreeM will attempt to interpret any COMPLEX value according to the usual rules for M
canonical numbers, i.e., the string sabc123.345%fbd3.1 would be interpreted as a complex
number with the real part being 123.345 and the imaginary part being 3. 1.

16.3 INTEGER

An INTEGER is an interpretation of numeric data with any fractional part removed.

16.4 REAL

A REAL is a numeric interpretation of data including a fractional part.

16.5 STRING

The STRING is the fundamental FreeM data type. Other types are inferred from the context
of their usage.

16.5.1 String Rules
The following rules apply to all FreeM strings:

e Must not exceed 255 characters
e Must not contain $C(0), $C(201), or $C(202)

16.5.2 String Quoting Rules

Strings in FreeM must be surrounded in double quotes:
SET MYSTRING="This is a string literal"
If you want to include double quotes inside of a string, simply double them:
SET MYSTRING="This is a ""string literal"" with embedded double quotes"

16.6 Custom Types (Classes)
See Chapter 25 [Object-Oriented Programming], page 83.

71

17 Globals

17.1 Globals Overview

FreeM supports typical M globals, which are often described as persistent, hierachical sparse
arrays. Globals make it relatively simple to include persistent data in an application without
requiring the developer to use an external database management system, and offer syntax
and semantics so similar to M local variables and structured system variables that moving
from one to the other is seamless.

Each global comprises three elements:
e An alphabetic name beginning with a caret (*) or a caret and a percent sign (~%)
e Optionally, one or more comma-delimited subscripts, enclosed in parentheses
e A value of up to 255 characters in length

A leading percent sign in the global name will force the named global into the SYSTEM
namespace of the current FreeM environment.

17.2 Creating Globals

To create a global, you can use the SET command:
SET "MYGLOBAL("foo","bar")="this is the data value"

17.3 Removing Globals
To remove an entire global, you can use the KILL command with the unsubscripted name
of the global:

KILL "MYGLOBAL

If you only want to remove part of a global, i.e., beginning at a certain subscript level, use
the KILL command with a subscripted name:

KILL "MYGLOBAL("foo")
This will remove only the "foo" subscript and all of its children.

If you only want to remove the data value at a specific subscript level, leaving the subscript
itself intact, use KVALUE:

KVALUE "MYGLOBAL("foo")

17.4 Global Storage

FreeM globals are stored in $PREFIX/var/freem/<environment-name>/<namespace-
name>/globals in a binary format.

Global files have a header of the following format:
typedef struct global_header {

char magic[5]; /* FRMGL */
int format_version;
char host_triplet[40];

Chapter 17: Globals

char host_id[256];

unsigned long block_size;
unsigned long last_transaction_id;

long created;
long last_backup;

} global_header;

72

73

18 Concurrency Control

18.1 Concurrency Control Overview

Multitasking, multi-user FreeM applications must concern themselves with conscientious
management of concurrent access to globals in order to maintain logical consistency and
prevent concurrent reads and writes from conflicting with each other.

In FreeM, there are two mechanisms provided for managing concurrent global access: advi-
sory locks, and transaction processing.

Advisory locks allow applications to voluntarily coordinate concurrent access to globals with
the LOCK command, and require each application to check the LOCK status prior to accessing
a global.

Transaction processing allows applications to delineate sets of global operations (sets, kills,
etc.) as being part of a transaction, in which no operations are performed against the
globals contained within the transaction until the transaction is committed. In addition,
processes other than the one running the transaction will be forced to wait to access globals
for either the duration of the commit phase (batch mode), or for the entire duration of the
transaction (serial mode).

18.2 Advisory Locks

18.3 Transaction Processing

FreeM implements a significant subset of the transaction processing features from ANSI
X11.1-1995. This allows a series of global operations to be conducted all at once, either in
batch mode (where concurrent operation is not interrupted until the last possible moment),
or in serial mode (where writes are guaranteed to be atomic, consistent, isolated, and

durable).

18.3.1 Theory of Operation

FreeM uses a pessimistic concurrency control mechanism for SERIAL transactions, meaning
that any TSTART command that includes the SERIAL transaction parameter will cause the
process to acquire the transaction processing mutex, which prevents any process but the
one holding the mutex from performing any data access (read or write) until either TCOMMIT
or TROLLBACK is called, either committing or rolling back the transaction, respectively.

Any transaction in between its TSTART and TCOMMIT/TROLLBACK is said to be in-flight.
During the in-flight stage, pending global operations are held only in memory and after-
image journals.

FreeM maintains a list of all globals affected during a transaction in-flight. When a TCOMMIT
is reached, FreeM will generate a checkpoint of each global data file to be changed by
the transaction. These checkpoints allow all FreeM globals to be restored to their pre-
transaction state if a TCOMMIT should fail part of the way through its operation.

Checkpoints can have one of two modes:

Chapter 18: Concurrency Control 74

CP_REMOVE
Used for globals that did not exist prior to the beginning of this transaction.
Simply marks the entire global data file for deletion in case of TCOMMIT failure.

CP_RESTORE
Used for globals that did exist prior to the beginning of this transaction. In this
case, the entire global data file is copied to a new file with a .chk extension. In
cases of TCOMMIT failure, CP_RESTORE checkpoint files will be restored over the
partially-modified live data file.

The below example shows a few global operations and checkpoints for a transaction in-flight
using the trantab direct-mode command:

TL1:DEFAULT.USER> trantab

$TLEVEL 1%
Operations for Transaction ID: 6eald4aad-b8f1-47f9-9f52-4f513f892bcO [RESTARTABLE SERIALIJ

OP. NO. ACTION KEY/DATA

1 SET “F00=3

2 KILL “FOO

3 SET “snw=10

4 SET “BRANDNEW=6

Global checkpoints:

GLOBAL MODE FILES

“BRANDNEW CP_REMOVE IN: /usr/local/var/freem/USER/global

“snw CP_RESTORE IN: /usr/local/var/freem/USER/global
QUT: /usr/local/var/freem/USER/global

“F0O0 CP_RESTORE IN: /usr/local/var/freem/USER/global

OUT: /usr/local/var/freem/USER/global

In the above example, IN files are the live data file that will be overwritten or removed, and
0UT files are the checkpoints themselves. Note that OUT files are only used for CP_RESTORE
checkpoints.

18.3.2 Using Transaction Processing
To use transactions in FreeM, you need to be familiar with three commands:
e TSTART
e TCOMMIT
e TROLLBACK
With transaction processing, global variable operations occurring between TSTART and
TCOMMIT commands will be contained within the transaction.

The atomicity, consistency, isolation, and durability facets of FreeM transaction hinge on
the transaction mode.

Chapter 18: Concurrency Control 75

18.3.2.1 BATCH Transactions

BATCH transactions offer higher performance, and allow other applications aside from the
one doing the transaction to continue normal operations until the transaction is committed
with TCOMMIT. In batch mode, other processes are only locked out of normal operation
during the commit phase of the transaction.

The effect of this is that the operations within the batch transaction will not be interleaved
with global writes from other applications, but the entire lifetime of the transaction is not
guaranteed to be serialized with respect to the transaction processing activities of other
running applications in the environment.

18.3.2.2 SERIAL Transactions

SERIAL transactions offer full ACID compliance at the expense of multiprocessing perfor-
mance. In serial mode, a TSTART blocks all activity from all other FreeM processes in the
environment, and this blocking effect is not released until the transaction is committed with
TCOMMIT or rolled back with TROLLBACK (or due to abnormal conditions in the environment
that preclude the successful completion of the transaction).

76

19 Local Variables

19.1 Local Variables Overview
FreeM local variables have the same data structure as global variables, but are scoped to a
single FreeM process, and stored in memory.
Each local comprises three elements:
e An alphabetic name beginning with a letter or a percent sign (%)
e Optionally, one or more comma-delimited subscripts, enclosed in parentheses

e A value of up to 255 characters in length

19.2 Creating Local Variables

To create a local variable, use the SET command:
SET MYLOCAL("foo","bar")="this is the data value"

19.3 Removing Local Variables
To remove an entire local variable, you can use the KILL command with the unsubscripted
name of the variable:

KILL MYLOCAL

If you only want to remove part of a local variable, i.e., beginning at a certain subscript
level, use the KILL command with a subscripted name:

KILL MYLOCAL("foo")
This will remove only the "foo" subscript and all of its children.

If you only want to remove the data value at a specific subscript level, leaving the subscript
itself intact, use KVALUE:

KVALUE MYLOCAL("foo")

7

20 Scoping

By default, FreeM local variables and their values are scoped to the entire process, meaning
that any function or subroutine can access and modify their values. This can lead to
pernicious bugs.

M provides the NEW command to work around these issues. When NEW is called with a local
variable as its argument, FreeM will scope the variable to the process stack frame in which
the NEW command occured. When exiting the stack frame (i.e. with the QUIT command),
FreeM will restore the variable to its value prior to being NEWed.

Example

MYRTN ;
S J=1 ; set local variable J to 1

W J,! ; this will output "1"
D X ; execute subroutine X
W J,! ; this will output "1", as the value of J was restored
Q
X ;
N J ; stack J
S J=6 ; set its value to 6
W J,! ; this will output "6"
Q ; quit from the subroutine, destroying its stack frame

20.1 Scoping Considerations for $STEST

In M, the truth value of comparisons, logic operations, and certain forms of LOCK is stored
in the $TEST intrinsic special variable, which follows the same rules as any M local variable.

This is probably the most significant design flaw of the language, as the side effects of logic
on $TEST lead to incredibly difficult bugs. However, M allows $TEST to be NEWed, and FreeM
provides the THEN command® to help in the case of conditionals. THEN stacks $TEST to the
end of the line.

When writing new M code in FreeM, we strongly suggest using THEN as follows:

MYRTN ;
IF MYVAR=1 THEN DO SUBRT

This is instead of the traditional form:

MYRTN ;
IF MYVAR=1 DO SUBR

1 From MDC Type A extension X11/1998-31

Chapter 20: Scoping

78

-

Style Recommendation

Note that THEN is not in any currently published version of the Standard, but is
part of MDC Type A extension X11/1998-31. However, we recommend using
THEN instead of favoring portability, as there is no defensible reason for this
incredibly simple feature not to be ubiquitous.

If you use other M implementations, you should bug the implementers to im-
plement THEN, as it at least partially mitigates an inexcusable flaw in the design
of M.

21 Decision Constructs

79

22 Branch Constructs

80

23 Loop Constructs

81

24 Modular Programming

24.1 Subroutines

24.2 Extrinsic Functions

82

83

25 Object-Oriented Programming

25.1 Classes

25.1.1 Class Overview

A class is the primary organizing concept of FreeM support for object-oriented program-
ming, and in FreeM, is simply an M routine with a few special properties:

MYCLASS(THIS,INIT) :0BJECT ; Constructor for MYCLASS, inherits OBJECT
; two private variables
S THIS("NUMERATOR") :PRIVATE=$P(INIT,"/",1)
S THIS("DENOMINATOR") :PRIVATE=$P(INIT,"/",2)

Q
DESTROY(THIS) ; This is the destructor
Q

The above example demonstrates general class syntax.

25.1.2 Constructors

A constructor is an M entry point that is called when a new instance of a class is created.
A constructor must be the first entry point in a class routine, its tag must match the
class/routine name, and it must take two arguments, THIS and INIT.
THIS represents the instance of the object being accessed, and INIT represents an initializer
that can be used to assign an initial value to the object when instantiating the class.
A constructor looks like this:
#FRACTION(THIS,INIT) :0BJECT ;
S THIS("NUMERATOR") :PRIVATE=$P (INIT,"/",1)
S THIS("DENOMINATOR") :PRIVATE=$P(INIT,"/",2)
Q
Syntax
<class-name>(THIS,INIT) [:<superclass>]
In the above example, <superclass> represents the name of a class from which this class
should inherit. In this case, the FRACTION class inherits from the OBJECT class. Note that
this is not strictly necessary in this case, as all classes in FreeM automatically inherit from
OBJECT.

25.1.3 Destructors

A destructor is called when you KILL an instance variable. Its tag must be DESTROY, and
it must take one argument (THIS).

The destructor should be used to clean up any resources used by class methods.

A destructor looks like this:

DESTROY (THIS) ;
; free any resources that should be freed at the end of the object’s lifetimef]

Q

Chapter 25: Object-Oriented Programming 84

25.2 Inheritance

Every class you create will automatically inherit the methods and functionality of the
OBJECT class, supplied with FreeM.

When attempting to call a method, FreeM will first search the class routine for a matching
entry point, and then follow the inheritance chain upwards until a matching entry point is
found. If the final class in the chain does not have a matching entry point, FreeM will try
to find a matching entry point in the O0BJECT class.

Inheritance is achieved by specifying the name of the superclass in the constructor:
CLASS(THIS,INIT) :SUPERCLASS

25.2.1 Runtime Polymorphism

You can achieve runtime polymorphism by subclassing, and defining methods in the subclass
that match the names of existing methods in the superclass. Following FreeM inheritance
rules, the overridden method in the subclass will be called, and the method in the superclass
will not.

Note that the overridden method in the subclass can take a different set or number of
arguments than the formallist of the superclass method would specify.

25.3 Methods

Class methods are defined as tags with formallists in a class routine, and per the typical
FreeM object pattern, must take at least one argument, being THIS (representing a reference
to the object instance being accessed).

The following class (MYCLASS) has a constructor, a destructor, and a method called
MYMETHOD:

YMYCLASS (THIS, INIT) ;
Q THIS

DESTROY (THIS) ;
Q

MYMETHOD (THIS) ;
Q "VALUE"

The dot operator is used to invoke class methods:

DEFAULT.USER> N MYOBJ=$#"/MYCLASS("")
DEFAULT.USER> W MYOBJ.MYMETHOD ()
VALUE

25.4 Public and Private Variables

FreeM supports private fields with the :PRIVATE specifier in the SET command, enforcing
classical object-oriented data encapsulation. The :PUBLIC specifier is provided for com-
pleteness, and is the default.

The below constructor for a FRACTION class defines two private fields:
%FRACTION(THIS,INIT) :0BJECT ;

S THIS("NUMERATOR") :PRIVATE=$P (INIT,"/",1)
S THIS("DENOMINATOR") :PRIVATE=$P(INIT,"/",2)

Chapter 25: Object-Oriented Programming 85

Q

Either of the following commands will create a public field:

S THIS("VARNAM")="Initial Value"
S THIS("VARNAM") :PUBLIC="Initial Value"

Attempting to access private fields from outside of the class will raise error condition
ZOBJFLDACCV.

25.5 Instantiating Objects
To instantiate an object (i.e., create an object from a certain class), you will use the NEW
command as follows:

NEW MYSTR=$#"%STRING("myString")

This will create a local variable called MYSTR of type STRING, and initialize it with the
value myString.

25.5.1 Determining Object Class

To determine the class of any FreeM local variable, you will use the $$TYPE() method:

USER> W MYSTR.$$TYPE()
“%STRING

The $$TYPE() method is a member of the 0BJECT class.

26 Libraries

86

27 Sequential 1/0

87

88

28 Network I/0

Network I/O in FreeM is supplied through I/O channels 100-255. The normal READ and
WRITE syntax will work with network sockets, with a few exceptions.

28.1 Opening and Connecting a Client Socket

To open a client socket and connect to it, you will need to call the OPEN command and the
USE command:

; Set socket read terminator to LF

SET “$DEVICE(100,"OPTIONS","TERMINATOR")=$C(10)
; Open an IPv4 TCP socket to mail.mydomain.com on port 25 (SMTP)
; and connect to it

OPEN 100:"mail.mydomain.com:25:IPV4:TCP"
USE 100:/CONNECT

b

; Read a line of input from the remote host and write it to the terminall]

NEW LINE
READ LINE
USE O

WRITE LINE,!

I

; CLOSE the socket and disconnect

CLOSE 100
QUIT

89

29 Extended Global References

29.1 Standard Extended Global References

FreeM supports extended global references, allowing the user to access globals in namespaces
other than the current default namespace and the SYSTEM namespace, without switching to
the other namespace.
For example, if you are in the USER namespace, the following code will print the value of
"VA(200,0) in the VISTA namespace

WRITE ~|"VISTA"|VA(200,0),!
You may also use an expression that resolves to a string containing a valid namespace name:

SET NS="VISTA"
WRITE ~|NS|VA(200,0),!

90

30 Global Aliasing

FreeM provides the ability to set alternative names for M global variables.
To create an alias of "FOO named “BAR, use the following command:
SET ~$JOB($J0OB,"ALIASES",""BAR")=""F0O0"

If such an alias is set, any reference to global variable "BAR will affect “FOO instead of "BAR
until ~$JOB($J0B, "ALIASES",""BAR") is KILLed. If "BAR existed prior to the definition of
this alias, its data will be unavailable to and unaffected by application code.

91

31 Global Mappings

FreeM supports creating persistent mappings through which arbitrary global names may
be mapped to specific namespaces. This allows non-% globals to be stored in the SYSTEM
namespace, or % globals to be stored in non-SYSTEM namespaces.

To map the "FOO global to the SYSTEM namespace, any of the following will work:
MAP GLOBAL “F0OO="SYSTEM"
SET ~“$GLOBAL("FOOQ","NAMESPACE")="SYSTEM"
SET ~“$SYSTEM("MAPPINGS","GLOBAL",""F00")="SYSTEM"

There is no functional difference in any of the three approaches; the method you choose is
a matter of personal preference.

To remove the above mapping, any of the following examples will also work:
UNMAP GLOBAL ~F0O

KILL ~$GLOBAL("FOO","NAMESPACE")
KILL ~$SYSTEM("MAPPINGS","GLOBAL","~F00")

92

32 Asynchronous Event Handling

Asynchronous event handling in FreeM follows the specifications of the unpublished MDC
Millennium Draft Standard.

32.1 Setting Up Async Event Handlers

Asynchronous event handlers are configured through the ~$JOB structured system variable
for job-specific events, and the "$SYSTEM structured system variable for system-wide events.
In order to become proficient in writing asynchronous event handling code, you need to be
aware of several important concepts:

Event Classes
Event classes denote particular categories of events. These include COMM, HALT,
IPC, INTERRUPT, POWER, TIMER, TRIGGER, and USER event classes. At present,
only INTERRUPT and TRIGGER event classes are supported.

Event Identifiers
Event identifiers denote the precise nature of the event that has occurred. For
instance, resizing the terminal window in which a FreeM job is running will
send an event of class INTERRUPT with an event identifier of SIGWINCH (short
for SIGnal WINdow CHange).

FEvent Handlers
Event handlers are M routines or subroutines that can be registered to run
when an event of a certain event class occurs.

Event Registration
Event registration is the process of modifying the “$J0B or “$SYSTEM SSVN
to associate a particular event class and event identifier with an event handler
routine or subroutine.

Event Blocking and Unblocking
Event blocking is the means by which asynchronous event handling can be tem-
porarily suspended. For example, asynchronous events are temporarily and
implicitly blocked for the duration of event handler execution, unless explic-
itly un-blocked within the event handler. Event handling can also be blocked
and unblocked programatically from M code using the ABLOCK and AUNBLOCK
commands.

The following sections of this chapter will take you step-by-step through setting up an event
handler for SIGWINCH signal handling.

32.2 Registering an Asynchronous Event Handler
To register a job-specific event handler that will only execute in the current FreeM process,
use the following syntax:

SET ~$J0B($J0B,"EVENT", event-class,event-identifier)=entryref

To register a system-wide event handler that will execute in every FreeM process, use the
following syntax:

SET ~“$SYSTEM("EVENT",event-class,event-identifier)=entryref

Chapter 32: Asynchronous Event Handling 93

For example, use the following to register "RESIZE as an asynchronous event handler for
SIGWINCH events:

SET ~$JOB($JOB,"EVENT","INTERRUPT","SIGWINCH")=""RESIZE"

This by itself will not enable asynchronous event handling, as it merely registers an event
handler, associating it with event class INTERRUPT and event identifier SIGWINCH.

32.3 Enabling Asynchronous Event Handling

In order to enable asyncronous event handling, the ASTART command is used. In the fol-
lowing example, we will enable asynchronous event handling for the INTERRUPT event class:

ASTART "INTERRUPT"

Omitting the "INTERRUPT" argument will enable asynchronous event handling for all event
classes. See ASTART in the commands section for more details.

Once this is done, any event handlers registered for the INTERRUPT event class in “$J0B will
be executed asynchronously as appropriate.

Please note that ASTART "TRIGGER" is run implicitly at FreeM startup, to ensure consistency
in applications depending on business logic contained in system-wide global triggers. To
disable this behavior, add ASTOP "TRIGGER" to the LOCAL.STARTUP routine in the USER
namespace. If LOCAL.STARTUP does not yet exist in your environment, you may create it
by typing fmadm edit routine USER LOCAL.STARTUP from your UNIX command-line shell.

32.4 Disabling Asynchronous Event Handling

To disable asynchronous event handling, the ASTOP command is used. In the following
example, we will disable asynchronous event handling for the INTERRUPT event class:

ASTOP "INTERRUPT"

Omitting the "INTERRUPT" argument will disable asynchronous event handling for all event
classes. See ASTOP in the commands section for more details.

You may also disable asynchronous event handling for a specific event identifier by KILLing
the appropriate node in the “$J0OB SSVN, which unregisters the event handler altogether.
The following example will unregister the event handler for the SIGWINCH event identifier:

KILL ~$JOB($JOB,"EVENT","INTERRUPT","SIGWINCH")

32.5 Temporarily Blocking Asynchronous Event Handling

To temporarily block processing of specific event classes, you will use the ABLOCK command.
ABLOCK functions incrementally, that is, each successive call to ABLOCK will increment a
counter of blocks held for the specified event class or classes, and each successive call to
AUNBLOCK will decrement that counter. Event handling for the specified event classes will
be blocked as long as the ABLOCK counter for those classes is greater than zero. Thus, event
blocking is cumulative, in a manner similar to M incremental locks.

The following example blocks asynchronous event handling for the INTERRUPT event class:
ABLOCK "INTERRUPT"

Note that entering an event handler causes an implicit ABLOCK of all event classes, to prevent
event handlers from interrupting other event handlers during their execution. This may be

Chapter 32: Asynchronous Event Handling 94

overridden by calling AUNBLOCK for one or more event classes within an event handler.
However, unblocking event handling during an event handler should be done with great
caution, as this can make the flow of code execution somewhat unpredictable, especially if
M globals are modified inside of an event handler routine or subroutine.

Modifying M globals within event handlers is allowed but strongly discouraged, as doing so
can lead to logical corruption of the data. If you must modify an M global within an event
handler, guard all such operations with prodigious and careful use of LOCKs, ensuring that
such modifications occur in the desired logical order.

95

33 Global Triggers

Global triggers use the FreeM asynchronous event handling subsystem to allow a FreeM
process to execute arbitrary M code when a particular action occurs on a particular global.

To set up a global trigger, you must set up an event handler for event class TRIGGER. The
event identifier must be in the format of "<action>:<gvn>", where <gvn> is a global variable
name, and <action> is one of the following:

DATA Trigger will fire when the $DATA intrinsic function is called on <gwn>.
GET Trigger will fire when <gun> is read from.
INCREMENT

Trigger will fire when intrinsic function $INCREMENT is called on <gun>.
KILL Trigger will fire when <gun> is KILLed.
NEXT Trigger will fire when intrinsic function $NEXT is called on <gun>.
ORDER Trigger will fire when intrinsic function $0RDER is called on <gun>.
QUERY Trigger will fire when intrinsic function $QUERY is called on <gun>.
SET Trigger will fire when SET <gvn>=value occurs.
ZDATA Trigger will fire when intrinsic function ZDATA is called on <gvn>.

When a TRIGGER event occurs, the "GLOBAL" node of the “$EVENT structured system variable
will be populated with the global reference that invoked the trigger event.

If a SET or KILL trigger was the source of the TRIGGER event, the OLD_VALUE node of “$EVENT
will be populated with original value of ~$EVENT ("GLOBAL") prior to the change, and NEW_
VALUE will be populated with the new value. This allows triggers to contain logic to undo
global changes. This functionality can also be used to provide auditing of specific global
changes.

The following example shows a trigger implemented for SET operations on the “DD global.
TRIGGER ;

b

; Set up a SET trigger on “DD

SET ~$JOB($JOB, "EVENT","TRIGGER","SET: "DD")="0NSET"TRIGGER"

b

; Enable the TRIGGER event class

ASTART "TRIGGER"

’

; Try setting a node in "DD

SET “DD(1)="Test"
; Quit

b

Chapter 33: Global Triggers 96

QUIT

’

ONSET ;
WRITE "The "_~"$EVENT("GLOBAL")_" global node was SET.",!
QUIT

You can also set up a trigger that applies to all FreeM processes by setting
descendant subscripts of ~$SYSTEM("EVENT","TRIGGER",...) instead of using
~$JOB($JOB, "EVENT","TRIGGER", .. .).

34 Synchronous Event Handling

97

35 GUI Programming with MWAPI

98

36 User-Defined Z Commands

99

100

37 User-Defined Z Functions

101

38 User-Defined SSVNs

102

39 Language Dialects

103

40 System Library Routines

40.1 ~%ZCOLUMNS

This routine is the implementation of the $ZCOLUMNS intrinsic special variable.

40.2 %SYSINIT

This routine is the default startup routine for FreeM running in direct mode.

Running DO INFO from direct mode will use this routine to display information about the
current FreeM status and namespace configuration.

40.3 “%ZHELP

This routine implements the online help feature of FreeM, invoked by typing 7 in direct
mode. It simply asks the underlying system to execute the command info freem.

40.4 “%ZROWS

This routine is the implementation of the $ZROWS intrinsic special variable.

104

41 Interrupt Handling

When FreeM receives the SIGINT signal, either by pressing Ctr1-C during program execu-
tion, or by external signal from the operating system, the FreeM environment daemon, or
another external process, one of two things can happen, depending on the state of the $ZI
special variable:

$ZI evaluates true
In this case, the ZINRPT error is raised, and normal error handling procedures
apply. If neither $ZTRAP nor $ETRAP are set, FreeM prints an error diagnostic
on the home device and will exit the FreeM process in application mode (i.e.,
the freem executable was started with the ——routine or -r flag), or return to
the direct mode prompt otherwise.

This is the default behavior of FreeM.

$ZI evaluates false
In this case, no error is raised, but the $ZCONTROLC flag is set. In this mode of
operation, it is up to program code to check for $ZCONTROLC and take appro-
priate action.

Checking the value of $ZCONTROLC will reset it to false.
In either case, if asynchronous event handling is enabled for the INTERRUPT event class (i.e.,

ASTART "INTERRUPT" or ASTART have been invoked by the current process), an asynchronous
event of event class INTERRUPT and event identifier SIGINT will be enqueued.

105

42 Error Processing

FreeM exposes three means of processing M program execution errors:

FreeM-style error processing
FreeM-style error processing exposes a read/write error trap in $ZTRAP. The
contents of $ZTRAP must be either empty or a valid M entryref, to which FreeM
will GOTO if an error occurs. Each program stack execution level can have its
own $ZTRAP error handler enabled.

DSM 2.0-style error processing
DSM 2.0-style error processing emulates the $ZTRAP behavior of Digital Stan-
dard MUMPS v2. It has the same behavior as FreeM-style error handling, with
the exception that in DSM 2.0-style error processing, only one $ZTRAP error
handler is set across all program stack execution levels.

Standard error processing
Standard error processing uses the NEW-able $ETRAP variable to store error han-
dler code, which may be any valid M code. The code in $ETRAP will run when
an error occurs or the $ECODE ISV becomes non-empty. Stack information for
standard error handling is provided by the $STACK ISV, the $STACK() intrinsic
pseudo-function, and the NEW-able $ESTACK ISV.

If $ETRAP is non-empty when an error condition occurs, $ZTRAP is ignored,
regardless of whether FreeM-style or DSM 2.0-style error processing is enabled
at the time of the error.

For further information on switching between FreeM-style and DSM 2.0-style $ZTRAP error
handling, see the documentation for the BREAK command.

106

43 FreeM Error Codes

ZINRPT - interrupt
Raised when an interrupt signal is received.

ZBKERR - BREAK point
Raised when a BREAK point is reached.

ZNOSTAND - non standard syntax
Raised when features incompatible with the current value of $DIALECT are used.

ZUNDEF - wvariable not found
Raised when an undefined local or global variable is accessed. This error code
has been deprecated in favor of standard error codes M6 and M7.

ZLBLUNDEF - label not found
Raised when a referenced label is not found.

ZMISSOPD - missing operand
Raised when an operand is missing from an expression.

ZMISSOP - missing operator
Raised when an operator is missing from an expression.

ZILLOP - unrecognized operator
Raised when an unrecognized operator is encountered in an expression.

ZQUOTER - unmatched quotes
Raised when unbalanced quotes are encountered.

ZCOMMAER - comma expected
Raised when a comma is expected in program syntax but is not found.

ZASSIGNER - equals =’ expected
Raised when an equals sign is expected in program syntax but is not found.

ZARGER - argument not permitted
Raised when an argument is encountered in a syntactic position where argu-
ments are not permitted.

ZSPACER - blank ’ ’ expected
Raised when a space character is expected in program syntax but is not found.

ZBRAER - unmatched parentheses
Raised when unbalanced parentheses are detected in program syntax.

ZLVLERR - level error
Raised when a level error occurs.

ZDIVER - divide by zero
Raised when program code attempts to divide by zero. Deprecated in favor of
standard error code M9.

ZILLFUN - function not found
Raised when program code attempts to call intrinsic or extrinsic functions that
are not, defined.

Chapter 43: FreeM Error Codes 107

ZFUNARG - wrong number of function arguments
Raised when an intrinsic or extrinsic function is called with the wrong number
of arguments.

ZZTERR - ZTRAP error
Raised when a $ZTRAP error occurs.

ZNEXTERR - $NEXT/$ORDER error
Raised when an error occurs in $NEXT or $0ORDER.

ZSELER - $SELECT error
Raised when an error occurs in $SELECT

ZCMMND - illegal command
Raised when program code attempts to execute an illegal command.

ZARGLIST - argument list incorrect
Raised when the argument list supplied to an M language element does not
match that language element’s syntactic requirements.

ZINVEXPR - invalid expression
Raised when an invalid expression is encountered.

ZINVREF - invalid reference
Raised when an invalid variable reference is encountered.

ZMXSTR - string too long
Raised when a string is encountered that exceeds ~$SYSTEM("STRING_MAX").

ZTOOPARA - too many parameters
Raised when too many parameters are passed to a function or subroutine.

ZNQOPEN - unit not open
Raised when attempting to access an I/O channel that has not been opened.

ZNODEVICE - unit does not exist
Raised when attempting to access a device that does not exist.

ZPROTECT - file protection violation
Raised when attempting to access a file or device to which you do not have
permission.

ZGLOBER - global not permitted
Raised when attempting to use a global in a syntactic element where global
variables are not permitted.

ZFILERR - file not found
Raised when attempting to access a file that does not exist.

ZPGMQV - program overflow
Raised when a program overflows the limits of a routine buffer.

ZSTKOV - stack overflow
Raised when DO, FOR, or XECUTE nesting levels exceed the wvalue in
~$SYSTEM("NESTLEVLS")

Chapter 43: FreeM Error Codes 108

ZSTORE - symbol table overflow
Raised when program code attempts to store too much data in the local symbol
table. Should not occur unless symbol table auto-adjust is disabled.

ZNOREAD - file won’t read
Raised when program code attempts to read from an unreadable file.

ZNOWRITE - file won’t write
Raised when program code attempts to write to an unwritable file.

ZNOPGM - routine not found
Raised when an attempt is made to load or execute a routine that does not
exist in the current namespace.

ZNAKED - illegal naked reference
Raised when an attempt is made to use an illegal naked reference.

ZSBSCR - illegal subscript
Raised when an illegal subscript access is attempted.

ZISYNTX - insert syntaz
Raised when illegal insert syntax is used.

ZDBDGD - global data degradation
Raised when corruption is detected in global data files.

ZKILLER - job kill signal
Raised on a job kill signal.

ZHUPER - hangup signal
Raised on a job hangup signal.

ZMXNUM - numeric overflow
Raised when an assignment or expression result exceeds $ZPRECISION.

ZNOVAL - function returns no value
Raised when a function does not return a value. Extrinsic functions must QUIT
with a value.

ZTYPEMISMATCH - type mismatch
Raised when a type mismatch occurs.

ZMEMOV - out of memory
Raised when FreeM runs out of heap memory.

ZNAMERES - error in name resolution
Raised when an attempted name resolution fails.

ZSCKCREAT - error creating socket
Raised when an error occurs creating a socket for network I/0.

ZSCKIFAM - invalid address family (must be IPV4 or IPV6)
Raised when the address family specified in an OPEN command for a socket 1/O
channel is not IPV4 or IPV6.

ZSCKITYP - invalid connection type (must be TCP or UDP)
Raised when the connection type specified in an OPEN command for a socket
I/O channel is not TCP or UDP.

Chapter 43: FreeM Error Codes 109

ZSCKIPRT - invalid port number
Raised when the port number specified in an OPEN command for a socket I/O
channel is invalid. Valid TCP and UDP ports are in the range of 1-65535.

ZSCKCERR - connection error
Raised when an error occurs on a USE <channel>:/CONNECT command.

ZSCKAERR - USE action invalid for connection type (possibly CONNECT on UDP socket?)
Raised when an attempt is made to USE <channel>:/CONNECT on a UDP socket
I/O channel. The UDP protocol is connectionless.

ZSCKACON - attempted to CONNECT an already-connected socket
Raised when an attempt is made to USE <channel>:/CONNECT on a TCP socket
I/O channel that is already connected.

ZSCKNCON - attempted to READ from a disconnected TCP socket
Raised when an attempt is made to READ a T'CP socket that has not yet been
connected.

ZSCKEOPT - error setting socket options
Raised when an error is encountered while setting socket options.

ZSCKERCV - error in READ from socket
Raised when an error occurs in a socket I/O channel READ.

ZSCKESND - error in WRITE to socket
Raised when an error occurs while attempting to WRITE to a socket I/O channel.

ZNORPI - “$ZRPI only supported on Raspberry Pi hardware
Raised when an attempt is made to use the "$ZRPI structured system variable
on a platform other than the Raspberry Pi single-board computer.

ZCREDEF - cannot redefine CONST
Raised when attempts are made to redefine a CONST after its initial definition.

ZCMODIFY - cannot modify CONST
Raised when attempts are made to change the value of a CONST.

ZFILEXWR - cannot open existing file for WRITE
Raised when an attempt is made to open an existing file in write (but not
append) mode.

INEWMULT - initializing NEW with multiple setarguments not supported
Raised when you attempt to use multiple setarguments with initializing NEW,
e.g. NEW X=2,Y=3.

ZECODEINV - inwalid value for $ECODE

Raised when attempts are made to set $ECODE to an invalid error code value.
Obsolete and replaced by standard error code M101.

ZASSERT - programmer assertion failed
Raised when an ZASSERT expression’s result is not true.

ZUSERERR - user-defined error
Raised when program code calls THROW with an error code argument for which
the first character is U, or when $ECODE is set to an error code for which the
first character is U.

Chapter 43: FreeM Error Codes 110

Custom error messages for ZUSERERR may be set in ~$JOB($JOB, "USER_
ERRORS" ,<user_error_code>), where <user_error_code> represents the
custom error code.

For example:

DEFAULT.USER> S ~$JOB($JOB, "USER_ERRORS","UBLACKHOLE")="black hole encounter
DEFAULT.USER> THROW UBLACKHOLE

>> Error UBLACKHOLE: black hole encountered in SYSTEM:: %SYSINIT [$STACK =
>> THROW UBLACKHOLE

ZSYNTERR - syntaz error
Raised when a syntax error without a more specific error code is encountered.

ZCTRLB - break
Pseudo-error used by the FreeM debugger. Not visibly raised in normal program
operation.

ZASYNC - asynchronous interruption
Pseudo-error used by the FreeM asynchronous events subsystem. Not visibly
raised in normal program operation.

M1 - naked indicator undefined
Raised when an attempt is made to use a naked reference before the naked
indicator is set.

Chapter 43: FreeM Error Codes 111

M2 - inwalid combination with $FNUMBER code atom

M3 - SRANDOM seed less than 1

M4 - no true condition in $SELECT

M5 - line reference less than zero

M6 - undefined local variable

M7 - undefined global variable

M8 - undefined intrinsic special variable

M9 - divide by zero

M10 - inwalid pattern match range

M11 - no parameters passed

M12 - invalid line reference (negative offset)

M13 - invalid line reference (line not found)

M14 - line level not 1

M15 - undefined index variable

M16 - argumented QUIT not allowed

M17 - argumented QUIT required

M18 - fized length READ not greater than zero

M19 - cannot copy a tree or subtree onto itself

M20 - line must have a formal parameter list

M21 - algorithm specification invalid

M22 - SET or KILL to ~"$GLOBAL when data in global

M23 - SET or KILL to ~$JOB for non-existent job number

M24 - change to collation algorithm while subscripted local variables defined
M26 - non-existent environment

M27 - attempt to rollback a transaction that is not restartable

M28 - mathematical function, parameter out of range

M29 - SET or KILL on structured system variable not allowed by implementation
M30 - reference to global variable with different collating sequence within a collating
algorithm

M31 - control mmnemonic used for device without a mnemonic space selected
M32 - control mnemonic used in user-defined mnemonic space which has no associated line
M33 - SET or KILL to “"$ROUTINE when routine exists

M35 - device does not support mnemonic space

M36 - incompatible mnemonic spaces

M37 - READ from device identified by empty string

M38 - inwvalid structured system variable subscript

M39 - invalid $NAME argument

M40 - call-by-reference in JOB actual parameter

M41 - invalid LOCK argument within a transaction

M42 - invalid QUIT within a transaction

M43 - invalid range value ($X, $Y

M44 - invalid command outside of a transaction

M45 - invalid GOTO reference

M56 - identifier exceeds maximum length

M57 - more than one defining occurrence of label in routine

M58 - too few formal parameters

M60 - illegal attempt to use an undefined SSVN

M101 - invalid value for SECODE

M102 - synchronous and asynchronous event processing cannot be simultaneously enabled
for the same event class

M103 - invalid event identifier

M104 - ETRIGGER event identifier for IPC event class does not match job process
1dentifier

112

44 System Configuration

44.1 Installing FreeM

44.1.1 Installation Methods

FreeM allows the following installation methods:

Binary Repository
On recent versions the Ubuntu and Debian distributions of GNU/Linux, we
provide package repositories from which FreeM may easily be installed. See the
FreeM Wiki for more information, and https://packages.coherent-logic.com for
instructions.

If available, this is the simplest method of installing FreeM.

Binary Packages
We provide binary packages of FreeM for dpkg and rpm-based distributions of
GNU/Linux, and pkgadd packages for Solaris 8-10. If you cannot use reposito-
ries, this is the easiest option.

See https://freem.coherent-logic.com/binaries.cfm for downloads and instruc-
tions.

Source Archive
If you prefer installing from source, we recommend that you download the lat-
est .tar.gz file from https://freem.coherent-logic.com/downloads.cfm, and follow
these steps:

$ gunzip freem-<version>.tar.gz

$ tar xf freem-<version>.tar

$ cd freem

$./configure # see the Build Configuration section for optional flags]]
$ make

$ sudo make install

Once this process has been completed, you may proceed to Initial Configuration.

Installation from source archive is the most challenging but flexible supported
option for advanced users.

CVS Repository
If you wish to try the bleeding-edge development version of FreeM, you may do
so by following these steps:

$ cvs -d :pserver:anonymous@cvs.coherent-logic.com:/home/cvsroot co freem]
$ cd freem

$./autogen.sh

$./configure # see the Build Configuration section for optional flagsf]

$ make

$ sudo make install

Once this process has been completed, you may proceed to Initial Configuration.

Chapter 44: System Configuration 113

This installation method is by far the most complicated, and is intended only
for those who wish to contribute to FreeM development. It is not intended for
end users, and no technical support will be provided.

See the Contributor Guide on the FreeM Wiki for more information.

44.1.2 Build Configuration

When configuring FreeM with the supplied configure script, there are some FreeM-specific
options that may be used to compile in optional features, or exclude default ones:

--enable-mwapi (EXPERIMENTAL)

Enables experimental support for the M Windowing API (ANSI X11.6-1995)
using the OSF/Motif widget toolkit. Requires that you have the X11, Xt, ICE,
and Xm libraries, as well as all of their C header files.

Please consult your operating system’s documentation for the correct commands
to install the required libraries.

Example

$./configure --enable-mwapi
$ make
$ sudo make install

44.1.3 Initial Configuration

Once FreeM is installed, you will need to configure it:

1.
2.
3.

Create a user and group, each named freem, under which FreeM will run
Add any user accounts that will need to run FreeM to the freem group

Have all users added in step 2 sign out and sign in for the new group membership to
take effect

Run fmadm configure with superuser privileges to create the DEFAULT environment
with SYSTEM and USER namespaces and default after-image journal settings, and pop-
ulate the bundled vendor routines

Run fmadm start environment with superuser privileges to start the DEFAULT envi-
ronment

Make sure the environment is ready by running fmadm status environment with su-
peruser privileges

44.1.3.1 Creating Additional Environments

To create additional environments, do the following steps:

1.
2.

Create a new user and group for the environment (optional)

Run fmadm configure -e=<environment> -u=<username> -g=<groupname>
[-E=truelfalse] (the -E flag enables or disables the environment)

3. Run fmadm start environment —-e=<environment> to start the environment

4. Run fmadm status environment to make sure the environment is healthy

Chapter 44: System Configuration 114

44.1.3.2 Additional Customization

See the FreeM environment catalog at $PREFIX/etc/freem/env.conf, and the fmadm(1)
man page for more information.

$PREFIX represents the root location of your FreeM installation. This can be /usr/local,
/, or others, depending on how FreeM was built and installed.

115

45 Accessing FreeM from C Programs

FreeM provides a library, 1ibfreem. so, as well as corresponding header file freem.h, allow-
ing C programmers to write programs that access FreeM globals, locals, structured system
variables, subroutines, and extrinsic functions. This functionality can be used to implement
language bindings and data access drivers for external systems.

In order to be used in your C programs, your C programs must link with libfreem.so
and include freem.h. This will allow your C code access to the function prototypes, data
structures, and constants required for calling the 1ibfreem.so APIs.

You must exercise caution in developing programs that interface with FreeM through
libfreem.so to ensure that all libfreem.so API calls are serialized, as FreeM and the
libfreem.so library are neither thread-safe nor reentrant.

You must also avoid setting signal handlers for SIGALRM, as FreeM uses SIGALRM to manage
timeouts for LOCK, READ, and WRITE.

45.1 freem_ref_t Data Structure

The 1libfreem APT uses a struct of type freem_ref_t in order to communicate state, pass
in values, and return results.

The data structure, defined in freem.h, looks like this:
typedef struct freem_ref_t {

/*
The ’reftype’ field can be one of:

MREF_RT_GLOBAL
MREF_RT_SSV

*/

short reftype;

*
*
* MREF_RT_LOCAL
*
*

/%

* The ’name’ field is the name of the local variable,
* global variable, or SSVN (without ~ or ~§).

*/

char name[256] ;

/*

* Returned data goes in a string, so you’ve got to figure out the
* whole M canonical number thing yourself. Good luck. :-)

*/

char value[STRLEN];
short status;

unsigned int subscript_count;

Chapter 45: Accessing FreeM from C Programs 116

char subscripts[255] [256];

} freem_ref_t;

freem_ref_-t Members

reftype

name

value

status

The reftype member determines whether we are operating on a local variable,
a global variable, or a structured system variable. It may be set to any of
following constants: MREF_RT_LOCAL, MREF_RT_GLOBAL, or MREF_RT_SSV.

The name member contains the name of the global, local, or SSVN to be ac-
cessed. You must not include leading characters, such as = or ~$.

This member contains the value read from or the value to be written to the
global, local, or SSVN.

This member gives us various API status values after the API call returns. In
general, this value is also returned by each API function.

subscript_count

subscripts

The number of subscripts to be passed into the API function being called. This
value represents the maximum index into the first dimension of the subscripts
array.

A two-dimensional array containing the subscripts to which we are referring in

this API call.

45.2 freem_ent_t Data Structure

The freem_function() and freem_procedure() APIs in libfreem use the freem_ent_t
struct in order to indicate the name of the entry point being called, any arguments being
passed to it, and the return value of the called function (not used for freem_procedure()).

The data structure, defined in freem.h, looks like this:

typedef struct freem_ent_t {

/* name of function or procedure entry point */
char name[256] ;

/* return value */
char value[STRLEN];

/* value of ierr on return */
short status;

/* argument count and array */
unsigned int argument_count;
char arguments[255] [256];

} freem_ent_t;

Chapter 45: Accessing FreeM from C Programs 117

freem_ent_t Members

name The name member contains the name of the extrinsic function or procedure to
be called.
value This member contains the value returned by the function called. Not used by

freem_procedure().

status This member gives us the value of ierr after the function or procedure call
returns. The possible values of ierr are listed in merr.h.

argument_count
The number of arguments to be passed into the extrinsic function or procedure
being called. This value represents the maximum index into the first dimension
of the arguments array.

arguments
A two-dimensional array containing the arguments to be passed into the ex-
trinsic function or procedure being called.

45.3 freem_init()

Initializes 1ibfreem in preparation for calling other APIs.

Synopsis

pid_t freem_init(char *environment_name, char *namespace_name) ;
Parameters

environment_name
Specifies the environment to use.

namespace_name
Specifies the namespace to use.

Return Values

Returns the process ID of the 1ibfreem process on success, or -1 on failure.

Example

This example prompts the user to enter a FreeM namespace and then attempts to initialize
libfreem to use the selected namespace.

#include <stdio.h>
#include <string.h>
#include <freem.h>

int main(int argc, char *xargv, char **xenvp)
{

char namespace[256];

/* get the namespace name to use */
printf ("Enter FreeM namespace to use: ");
fgets(namespace, 255, stdin);

Chapter 45: Accessing FreeM from C Programs 118

/* remove the trailing newline */
namespace [strcspn(buffer, "\n")] = ’\0’;

/* initialize libfreem using the provided namespace */
if (freem_init ("DEFAULT", namespace) == TRUE) {
printf ("\nSuccess\n");

+
else {

printf ("\nFailure\n");
}

return O;

45.4 freem_version()

Returns the version of FreeM in use.

Synopsis

short freem_version(char *result);

Parameters

result The result parameter is a pointer to a buffer in which the FreeM version
information will be returned. The caller must allocate memory for this buffer
prior to calling this API. It should be at least 20 bytes in length.

Return Value

Returns 0.

Example

This example will display the FreeM version on standard output.

#include <stdio.h>
#include <string.h>
#include <freem.h>

int main(int argc, char *xargv, char *xenvp)

' char version[20] = {0};
freem_init(‘‘USER’’);
freem_version(version);
printf (¢ ‘FreeM version: Ys\n’’, version);

}

45.5 freem_set()
Sets a FreeM local node, global node, or writable SSVN node.

Chapter 45: Accessing FreeM from C Programs 119

Synopsis

short freem_set (freem_ref_t *ref);

Parameters

freem_ref_t
This parameter is a pointer to a freem_ref _t struct. The caller must allocate
the memory for this struct.

Return Value

Returns OK on success, or one of the other error values defined in merr.h.

Ezample

This example sets the value blue into global node “car("color").

#include <stdio.h>
#include <string.h>
#include <freem.h>

int main(int argc, char **argv, char **envp)
{

freem_ref_t ref;

/* we’re setting a global */
ref .reftype = MREF_RT_GLOBAL;

/* access global "car" */
strcpy(ref .name, "car");

/* set up the subscripts */
ref.subscript_count = 1;
strcpy(ref.subscripts[0], "color");

/* use the USER namespace */
freem_init ("USER");

/* write the data out */
freem_set (&ref);

45.6 freem_get()

Retrieves a FreeM local node, global node, or writable SSVN node.
Synopsis
short freem_get (freem_ref_t *ref);

Parameters

Chapter 45: Accessing FreeM from C Programs 120

freem_ref_t
This parameter is a pointer to a freem_ref _t struct. The caller must allocate
the memory for this struct.

Return Value

Returns OK on success, or one of the other error values defined in merr.h.
Example

This example retrieves the character set of the current process.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <freem.h>

int main(int argc, char **argv, char)
{

pid_t pid;

freem_ref_t ref;

/* get the PID of this process */
pid = getpid();

/* we want to access an SSVN */
ref .reftype = MREF_RT_SSV;

/* set up the name and subscripts */
strcpy(ref .name, "JOB");

ref.subscript_count = 2;
sprintf (ref.subscripts[0], "%d", pid);
strcpy(ref.subscripts[1], "CHARACTER");

/* initialize libfreem, using the USER namespace */
freem_init ("USER");

/* call libfreem API */
freem_get (&ref) ;

/* output the character set info */
printf ("PID %d character set is ’%s’\n", pid, ref.value);

45.7 freem_kill()

Deletes a FreeM local node, global node, or killable SSVN node, as well as all of its children.
short freem_kill(freem_ref_t *ref);

Chapter 45: Accessing FreeM from C Programs 121

Parameters

freem_ref_t
This parameter is a pointer to a freem_ref _t struct. The caller must allocate
the memory for this struct.

Return Value

Returns OK on success, or one of the other error values defined in merr.h.
Ezample

#include <stdio.h>

#include <string.h>

#include <freem.h>

int main(int argc, char **argv, char **envp)

{

freem_ref_t ref;

/* we’re killing a global node */
ref.reftype = MREF_RT_GLOBAL;

/* access global "car" */
strcpy(ref .name, "car");

/* set up the subscripts */
ref.subscript_count = O;

/* use the USER namespace */
freem_init ("USER");

/* kill the global and all its descendant subscripts */
freem_kill (&ref) ;

45.8 freem_data()
45.9 freem_order()
45.10 freem_query()
45.11 freem_lock()
45.12 freem_unlock()

45.13 freem_tstart()

Chapter 45: Accessing FreeM from C Programs

45.14 freem_trestart()
45.15 freem_trollback()
45.16 freem_tlevel()

45.17 freem_tcommit()
45.18 freem_function()

45.19 freem_procedure()

122

123

Appendix A FreeM Administrator

The fmadm utility is the preferred method of managing a FreeM installation, and will even-
tually replace all of the existing utilities. In support of FreeM operators, fmadm presents a
consistent, simple interface for all FreeM management tasks, and is namespace-aware. This
appendix will document each fmadm facility as it is implemented.

The fmadm utility’s functions all follow the below, consistent syntax:

usage: fmadm <action> <object> <namespace> [OPTIONS]

The action keyword can be one of the following:

list
examine
verify
compact
repair
create
remove
1mport
export
backup
restore
migrate

edit

Lists instances of object

Examines a single instance of object
Verifies the integrity of object
Compacts object

Repairs integrity problems in object
Creates an instance of object
Removes an instance of object
Imports an object

Exports an object

Creates a backup of object

Restores a backup of object
Migrates an instance of object from an older FreeM version to the current version

Edits an instance of object

The object keyword can be one of the following:

lock

jJournal

namespace

global

The FreeM LOCK table.

Supported actions are 1ist and remove.

FreeM after-image journaling.
Supported actions are examine and restore.

The examine action will dump the after-image journal entries for the selected
namespace in human-readable format.

The restore action will play after-image journals forward for the selected
namespace.

FreeM namespaces (collections of M routines and globals).

No actions yet implemented.

The data files representing each FreeM global.

Supported actions are 1ist, examine, remove, and verify.

Appendix A: FreeM Administrator 124

routine

job

An M routine, stored as a .m file.

Supported actions are 1ist, examine, remove, import, export, backup, and
edit.

A UNIX process representing an instance of the FreeM runtime.

Supported actions are 1list and examine.

125

Appendix B FreeM VIEW Commands and
Functions

B.1 VIEW 16: Total Count of Error Messages/View Single
Error Message

Unknown semantics

B.2 VIEW 17: Intrinsic Z-Commands

Allows the user to retrieve or specify the list of intrinsic Z-commands that FreeM will
attempt to run internally, allowing intrinsic Z-commands implemented internally to be
replaced with M equivalents implemented as %-routines in the SYSTEM namespace.

B.3 VIEW 18: Intrinsic Z-Functions

Allows the user to retrieve or specify the list of intrinsic Z-functions that FreeM will attempt
to run internally, allowing intrinsic Z-functions implemented internally to be replaced with
M equivalents implemented as %-routines in the SYSTEM namespace.

B.4 VIEW 19: Intrinsic Special Variables

Allows the user to retrieve or specify which special variables are implemented internally.

B.5 VIEW 20: Break Service Code

Allows the user to view or specify the code that will be run when a BREAK is encountered.

B.6 VIEW 21: View Size of Last Global

Allows the user to view the size of the last referenced global.

B.7 VIEW 22: Count VIEW 22 Aliases
Retrieves the number of VIEW 22 aliases in effect.

B.8 VIEW 23: View Contents of Input Buffer
Retrieves the contents of the I/O input buffer.

B.9 VIEW 24: Maximum Number of Screen Rows

Retrieves the maximum number of screen rows supported in the current FreeM build.

B.10 VIEW 25: Maximum Number of Screen Columns

Retrieves the maximum number of screen columns supported in the current FreeM build.

B.11 VIEW 26: DO/FOR/XECUTE Stack Pointer
Retrieves the DO, FOR, and XECUTE stack pointer.

Appendix B: FreeM VIEW Commands and Functions 126

B.12 VIEW 27: DO/FOR/XECUTE Stack Pointer (On
Error)

Retrieves the DO, FOR, and XECUTE stack pointer (on error).

B.13 VIEW 29: Copy Symbol Table

Copies the symbol table? We aren’t currently aware of what this means.

B.14 VIEW 30: Inspect Arguments

Retrieves the arguments passed to the freem executable.

B.15 VIEW 31: Count Environment Variables

Allows the user to inspect the number of variables in the process environment table.
Syntax
WRITE $VIEW(31),!

127

Appendix C Implementation Limits

128

Appendix D US-ASCII Character Set

Code Character

000 <NUL>
001 <SOH>
002 <STX>
003 <ETX>
004 <EOT>
005 <ENQ>
006 <ACK>
007 <BEL>
008 <BS>
009 <HT>
010 <LF>
011 <VT>
012 <FF>
013 <CR>
014 <80>
015 <SI>
016 <DLE>
017 <DC1>
018 <DC2>
019 <DC3>
020 <DC4>
021 <NAK>
022 <SYN>
023 <ETB>
024 <CAN>
025
026 <SUB>
027 <ESC>
028 <FS>
029 <GS>
030 <RS>
031 <UsS>
032 <space>
033 !

034 «

035 #

129

Appendix E FreeM Project Coding Standards

E.1 Module Headers

Module headers should adhere to the following format (where Dollar should be replaced
with a dollar sign):

~
*

DollarIdDollar
Function prototypes, structs, and macros for FreeM
binding library

Author: Serena Willis <snw@coherent-logic.com>
Copyright (C) 1998 MUG Deutschland
Copyright (C) <Year> Coherent Logic Development LLC

This file is part of FreeM.

FreeM is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FreeM is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero Public License for more details.

You should have received a copy of the GNU Affero Public License
along with FreeM. If not, see <https://www.gnu.org/licenses/>.

¥ X X X X X K K K X X X X X X X X X X K K X * X X

DollarLogDollar

*

* SPDX-FileCopyrightText: (C) 2025 Coherent Logic Development LLC
* SPDX-License-Identifier: AGPL-3.0-or-later

*% /

E.2 Variable Naming

Variables should be named in all lowercase letters, and words within them delimited by
underscores, such as my_useful_variable. PascalCase and camelCase are not to be used
in this codebase under any circumstances.

Constants defined via the C preprocessor should be in all uppercase letters, with words
within them likewise delimited by underscores, such as:

#define MY_USEFUL_CONSTANT 1

Appendix E: FreeM Project Coding Standards 130

E.3 Indentation and General Layout

This project uses four spaces for indentation. Tabs are not to be used under any circum-
stances, and all source files must use a linefeed character to delineate lines. If you are
working on a Windows machine, you must take care to follow this, as Windows will use a
carriage return followed by a linefeed by default.

This project follows a modified version of what is known as the Stroustrup indentation style.

E.4 Brace Placement (Functions)

We use modern, ANSI-style function prototypes, with the type specifier on the same line
as the function name. You may encounter other styles in the code, but we are transitioning
to the new style as time permits.

Below is a correct example:

int main(int argc, char *xargv, char *xenvp)

{

3

E.5 Brace Placement (if-for-while-do)

The if keyword should be followed by one space, then the opening paren and conditional
expression. We also use Stroustrup-style else blocks, rather than the K&R ’cuddled’ else:

if (x) {

}
else {

-
while (1) {

-

for (i = 1; i < 10; i++) {

}

do {
} while (x);

Single-statement if blocks should be isolated to a single line:
if (x) stmt();
not:

if (%)
stmt ();

Appendix E: FreeM Project Coding Standards 131

Notice that there is a space between if and (x), and also between stmt and (). This
should be followed throughout the code.

If an if block has an else if or else, all parts of the construct must be bracketed, even
if one or more of them contain only one statement:
if (x) {
foo();
}
else if (y) {
bar();
}

else {
bas();
}

E.6 Labels and goto

Labels must begin in column 1, and have two lines of vertical space above and one beneath.

E.7 Preprocessor Conditionals

E.8 coding standards, preprocessor conditionals

I have struggled with this, but have settled upon the standard practice of keeping them in
column 1.

E.9 Overall Program Spacing
e Variable declarations fall immediately beneath the opening curly brace, and should
initialize the variable right there whenever initialization is used.
e One line between the last variable declaration and the first line of real code.

e The return statement of a function (when used as the last line of a function) should
have one blank line above it and none below it.

e Really long functions (those whose entire body is longer than 24 lines) should have
a comment immediately following the closing curly brace of the function, telling you
what function the closing brace terminates.

E.10 The switch() Statement

We indent case one level beneath switch(), and the code within each case beneath the
case. Each case should have one line of vertical whitespace above it:

switch(foo) {

case some_const:
foo();

break;

Appendix E: FreeM Project Coding Standards 132

case some_other_const:
bar();

break;

default:
exit(1);

break;

E.11 Comments

We use C-style comments (/* comment */) exclusively, even on single-line comments. C++
comments (// comment) are not permitted.

Index

!

P 31
N 32
$

SASCIL . .ot 19
SCHAR . ..ot i 19
SDATA .. 19
SDEVICE ..ot 14
SDIALECT . .ot 14
SECODE ...t 14
SESTACK ..o oo 14
SETRAP ..o 14
SEXTRACT . ..o 19
SEIND . oottt 20
SENUMBER. ..t ot 20
SGET .« .o 20
SHOROLOG . .ot 15
SINSTANCEQOF . ..o 20
STO . oo 15
SIOB . oo 15
SIUSTIFY . oot 21
SKEY oot 15
SLENGTH. ..o 21
SNAME . oo 21
SN E X T oot e 21
SORDER. . ..o et 21
SPDISPLAY . ..ot 15
SPIECE ..o 22
SPRINCIPAL ...\ 15
SQLENGTH . ..o 22
$QSUBSCRIPT ..o 22
SQUERY .« .o 22
BQUIT .ot 15
SRANDOMttt 23
SREFERENCE . ..o 15
SREVERSE ..ot 23
SSELECT .ot 23
BSTACK . oot 15, 23
SSTORAGE ..o i 16
SSYSTEM ..ottt e 16
ST EST .ottt 16
ST EX T ot 24
STLEVEL . ..ot 16
STRANSLATE ..ot 24
STYPE ..ot 24
SVIEW .ot 2
SWITH . ..ot 16
B X 16
B 16
S A 16
SZB 17

133

SZCALL ...t 25
$ZCONTROLC ... 17
SZCRC .ot 25
SZDATA . ..ot 25
SZDATE ...ttt 17, 25
SZEDIT ...t 25
SZERROR 17
$ZHOROLOG 17, 25
SZINRPTt 17
SZIOB .. 17
SZKEY ..ot 26
SZLENGTH ... 26
SZLOCAL ...t 17
SZLSD . .. 26
SZM . 26
SZNAME ... 17, 26
SZNEXT ..ot 26
SZORDER. ..ot 26
SZPIECE\ 26
$ZPRECISIONt 17
SZPREVIOUS ...\t 27
$ZREFERENCE.......ccooiiiiiieei .. 17
$ZREPLACE ..ot 27
SZSYNTAX ..ottt 27
SZSYSTEM ...t 18
SZTIME ...\t 18, 27
SZTRAP ..o 18
SZUT .o 18
SZVERSION. ...\t 18
%

BDIALECT ...t 13
GSYSINTT ..o 103
“$CHARACTERo 54
“$DEVICE ...t 54
“$DISPLAY ...ttt 57
SSEVENT ..o 57
“$GLOBAL.ot 57
“BIOB. 58
“BLOCK . ..ot 62
“SOBIECT ..o 62
“$ROUTINE ...t 62
“$SYSTEM ...ttt 63
SSWINDOW . ..ot 64
“$ZPROCESS\t 65
SSZRPL. ..o 65
“%ZCOLUMNSot 103
SGZHELP 103
SGZROWS ..o 103

Index

ABLOCK. ... 32
aliasing, global 90
ANST X1 4
ASTART .o 32
ASTOP ..o 33
AUNBLOCK ..o 33

branch constructs.................. 80
BREAK ... 33
build configuration............. oL 113

coding standards, brace placement, functions.. 130
coding standards, brace

placement, if-for-while-do................... 130
coding standards, comments 132
coding standards, goto........... ... 131
coding standards, indentation................. 130
coding standards, labels....................... 131
coding standards, layout...................... 130
coding standards, module headers............. 129
coding standards, spacing of programs 131
coding standards, switch() 131
coding standards, variable naming 129
command line interface.................. 9
CcommMANdS 31
commands, 31
commands, !l 32
commands, @....... i i 31
commands, ABLOCK.......................... 32
commands, ASTARTo 32
commands, ASTOP........... 33
commands, AUNBLOCK....................... 33
commands, BREAK 33
commands, CLOSE 34
commands, debugging 49, 52
commands, DO i 34
commands, ELSE.............. ... 34
commands, external 31, 32
commands, FOR.............. 35
commands, GOTO.............. ..o 36
commands, HALT 37
commands, HANG............................. 37
commands, TF 37
commands, implementation-specific. 31, 49, 50,

51, 52, 53
commands, JOB 38

commands, KILLo oot 38

134
commands, KSUBSCRIPTS.................... 38
commands, KVALUE 39
commands, LOCK 39
commands, MERGE 40
commands, NEW 40
commands, non-standard .. 31, 32, 49, 50, 51, 52, 53
commands, OPEN 41
commands, QUIT................ ..o 42
commands, READ 42
commands, SET 43
commands, TCOMMIT 43
commands, THEN 43
commands, TROLLBACK 44
commands, TSTART 44
commands, USE 45
commands, VIEW ...l 45
commands, WRITE.................... 49
commands, XECUTE 49
commands, ZASSERT 49
commands, ZBREAK 49
commands, ZCONST 50
commands, ZGOTO 50
commands, ZHALT 50
commands, ZINSERT 50
commands, ZJOB...........ol 50
commands, ZLOAD 51
commands, ZMAP 51
commands, ZNEW 51
commands, ZPRINT 51
commands, ZQUIT 51
commands, ZREMOVE 51
commands, ZSAVE 51
commands, ZTHROW 52
commands, ZTRAP......... 52
commands, ZUNMAP.......................... 52
commands, ZWATCH.......................... 52
commands, ZWITH 53
commands, ZWRITE 53
concurrency control.............. 73
configuration, system 112
contributors, Best, John......................... 1
contributors, Diamond, Jon 1
contributors, Fox, Ronald L. 1
contributors, Gerum, Winfried 1
contributors, ha-Ashkenaz, Shalom 1
contributors, Kreis, Greg........................ 1
contributors, Landis, Larry...................... 1
contributors, Milligan, Lloyd 1
contributors, Morris, Steve 1
contributors, Murray, John...................... 1
contributors, Pastoors, Wilhelm 1
contributors, Schell, Kate 1
contributors, Schofield, Lyle..................... 1
contributors, Stefanik, Jim 1
contributors, Trocha, Axel 1
contributors, Walters, Dick...................... 1
contributors, Whitten, David.................... 1
contributors, Wicksell, David.................... 1

Index

contributors, Willis, Serena...................... 1
contributors, Zeck, Steve................, 1
conventionso i 3

D

daemon, freem oo 8
data .o 71
data types ..ot 70
data types, BOOLEAN 70
data types, COMPLEX, 70
data types, custom......... il 70
data types, INTEGER 70
data types, REAL it 70
data types, STRING, 70
debugging 12
decision constructs............ . oo 79
dialects, language............... il 102
direct mode.........coooiiiiiii 9
directivest 13
directives, %DIALECTccoi... 13
document conventions...................iiii... 3
DO 34, 80

ELSE ... 34,79
Error Codes ... 106
€ITOr ProCeSSING.vvviiiiiiiii ... 105
event handlers, blocking........................ 93
event handlers, disabling....................... 93
event handlers, enabling................ 93
event handlers, registration..................... 92
event handling, asynchronous 92
execution, interactive............ 9
extended global references...................... 89
extended global references, standard............ 89

fmadm 123
FOR ..ottt 35, 81
functions, extrinsic.............co i, 82

G

global references, extended 89
global triggers il 95
globals. 71
globals, aliasing............. oL 90
globals, creating o i 71
globals, mapping............. 91
globals, removing 71
globals, storageo ool 71
GOTO ... 36, 80

135

H
HALT ..o 37
HALT, in direct-mode 10
HANG . .o 37
1
TF oo 37, 79
installationo i 112
interrupt handling L 104
intrinsic functions, $ASCIT..................... 19
intrinsic functions, SCHAR..................... 19
intrinsic functions, $DATA 19
intrinsic functions, SEXTRACT 19
intrinsic functions, $FIND...................... 20
intrinsic functions, SFNUMBER................. 20
intrinsic functions, $GET 20
intrinsic functions, SINSTANCEOF 20
intrinsic functions, $JUSTIFY 21
intrinsic functions, SLENGTH.................. 21
intrinsic functions, SNAME 21
intrinsic functions, SNEXT..................... 21
intrinsic functions, SORDER.................... 21
intrinsic functions, $PIECE 22
intrinsic functions, SQLENGTH................ 22
intrinsic functions, $QSUBSCRIPT 22
intrinsic functions, SQUERY 22
intrinsic functions, SRANDOM................. 23
intrinsic functions, SREVERSE 23
intrinsic functions, $SELECT 23
intrinsic functions, $STACK.................... 23
intrinsic functions, $TEXT..................... 24
intrinsic functions, STRANSLATE 24
intrinsic functions, $TYPE..................... 24
intrinsic functions, $VIEW 24
intrinsic functions, $ZBOOLEAN 24
intrinsic functions, $ZCALL.................... 25
intrinsic functions, $ZCRC 25
intrinsic functions, $ZDATA.................... 25
intrinsic functions, $ZDATE.................... 25
intrinsic functions, $ZEDIT 25
intrinsic functions, $ZHOROLOG 25
intrinsic functions, $ZKEY 26
intrinsic functions, $ZLENGTH 26
intrinsic functions, $ZLSD 26
intrinsic functions, $ZM........ 26
intrinsic functions, $ZNAME................... 26
intrinsic functions, $ZNEXT 26
intrinsic functions, $ZORDER.................. 26
intrinsic functions, $ZPIECE................... 26
intrinsic functions, $ZPREVIOUS.............. 27
intrinsic functions, $ZREPLACE 27
intrinsic functions, $ZSYNTAX 27
intrinsic functions, $ZTIME.................... 27
intrinsic functions,

implementation-specific........... 24, 25, 26, 27
intrinsic special variables, $DEVICE 14

intrinsic special variables, $DIALECT 14

Index

intrinsic special variables, SECODE 14
intrinsic special variables, SESTACK 14
intrinsic special variables, SETRAP 14
intrinsic special variables, SHOROLOG......... 15
intrinsic special variables, $10.................. 15
intrinsic special variables, $JOB................ 15
intrinsic special variables, SKEY 15
intrinsic special variables, $PDISPLAY 15
intrinsic special variables, SPRINCIPAL........ 15
intrinsic special variables, SQUIT 15
intrinsic special variables, SREFERENCE...... 15
intrinsic special variables, $STACK............. 15
intrinsic special variables, $STORAGE 16
intrinsic special variables, $SYSTEM 16
intrinsic special variables, $TEST 16
intrinsic special variables, STLEVEL 16
intrinsic special variables, SWITH.............. 16
intrinsic special variables, $X................... 16
intrinsic special variables, $Y................... 16
intrinsic special variables, $ZA 16
intrinsic special variables, $ZB 17
intrinsic special variables, $ZCONTROLC...... 17
intrinsic special variables, $ZDATE............. 17
intrinsic special variables, $ZERROR............ 17
intrinsic special variables, $ZHOROLOG 17
intrinsic special variables, $ZINRPT............ 17
intrinsic special variables, $ZJOB 17
intrinsic special variables, $ZLOCAL........... 17
intrinsic special variables, $ZNAME 17
intrinsic special variables, $ZPRECISION 17
intrinsic special variables, $ZREFERENCE. 17
intrinsic special variables, $ZSYSTEM.......... 18
intrinsic special variables, $ZTIME 18
intrinsic special variables, $ZTRAP 18
intrinsic special variables, $ZUT................ 18
intrinsic special variables, $ZVERSION......... 18
intrinsic special variables,
implementation-specific............... 16, 17, 18
invocation, command-line 5

KILL ..o 38
KSUBSCRIPTSo 38
KVALUE.o 39

136
L
language dialects............. L. 102
libfreem, data structures: freem_ent_t......... 116
libfreem, data structures: freem_ref t.......... 115
libfreem, freem_data() 121
libfreem, freem_ent_t.argument_count 117
libfreem, freem_ent_t.arguments............... 117
libfreem, freem_ent_t.name.................... 117
libfreem, freem_ent_t.status................... 117
libfreem, freem_ent_t.value.................... 117
libfreem, freem_function()..................... 122
libfreem, freem_get()................. ..., 119
libfreem, freem_init() 117
libfreem, freem Kkill()................ 120
libfreem, freem _lock()........................ 121
libfreem, freem_order().................... ... 121
libfreem, freem_procedure() 122
libfreem, freem_query()oo... 121
libfreem, freem_ref_t.name.................... 116
libfreem, freem_ref_t.reftype................... 116
libfreem, freem_ref_t.status.................... 116
libfreem, freem_ref_t.subscript_count 116
libfreem, freem_ref_t.subscripts................ 116
libfreem, freem_ref t.value 116
libfreem, freem_set() 118
libfreem, freem_tcommit()..................... 122
libfreem, freem_tlevel()........................ 122
libfreem, freem_trestart() 122
libfreem, freem_trollback() 122
libfreem, freem_tstart() 121
libfreem, freem_unlock() 121
libfreem, freem_version()...................... 118
librariesoovii i 86
limitations, memory 127
local variables............ ... il 76
local variables, creating 76
local variables, removing 76
locking 73
LOCK .. 39
loop constructsoviii i 81
M
M Development Committee 4
mappings, global oo 91
maximum size, globalo 127
maximum size, routine........................ 127
maximum size, string 127
MDC .. 4
MERGEt 40
mMOodes, PrOGIamINeTvvueretteneatenenennns 9

modular programming 82

Index

N

networks, input and output 88
networks, opening and

connecting client sockets..................... 88
NEW . 40

object functions, $INSTANCEOF 20
object functions, $TYPE....................... 24
object-oriented programming................... 83
OPEN ... 41
operators, | 68
OPETAtOTS, F . v ettt 67
operators, #= 67
operators, & ... 68
OPETAtOTS, * .ttt 68
operators, *. 66
operators, ¥ 67
operators, ¥¥= 67
operators, ¥=. 67
operators, +...... i 66
operators, ++....... . i 66
operators, +=....... ... il 66
OPErators, - ..ot 66
operators, —.......... ... o oo ool 66
Operators, —= 66
OPETAOLS, /o v ettt 67
OPETAtOTS, /= .\ttt 67
OPETAtOrS, <.\ttt 67
OPerators, <=iiiiiiiii 67
Operators, = ... 67
OPErators, >. ... 67
OPErators, >=cuiiiiiiii 67
OPETAtOrS, 7.\ttt 67
OPETALOTS, [ttt 67
OPerators, |ouiuiiiii i 67
operators, |].. ..ot 67
OPErators, _.....ouiiiiiiiii i 67
OPerators, _= ...t 67
operators, @ i 68
OPErators, \ottt 67
OPErators, \=cuiiitteiiiiii 67
operators, unary +.............. ... oo 66
OPErators, UNATY =......uuuititiiineeeennnnnn.n 66
options, command-line..................., 5

P

postconditionals oL 79
programming, object-oriented 83

137
R
READ ... 42
REPL, direct-mode 11
TOUbINES. .o oottt 69
routines, as shell scripts..............., 6
S
SCOPING . oottt 7
SE T 43
shebang line 6
shell scripting............ L 6
SOVNS . et 54
standards, ANSIL....... i 4
standards, MDC oo, 4
structured system variables................ 54, 101
structured system variables, "SCHARACTER. .. 54
structured system variables, “$DEVICE........ 54
structured system variables, “$DISPLAY 57
structured system variables, “SEVENT......... 57
structured system variables, "$§GLOBAL 57
structured system variables, “$JOB 58
structured system variables, “$LOCK 62
structured system variables, “$OBJECT........ 62
structured system variables, “$ROUTINE...... 62
structured system variables, “$SYSTEM 63
structured system variables, “$SWINDOW 64
structured system variables, ~“$ZPROCESS..... 65
structured system variables, “$ZRPI 65
structured system variables, user-defined 101
SUbTOUtINES . ..ot 82
system library routines.............. 103
system library routines, %SYSINIT 103
system library routines, “%ZCOLUMNS 103
system library routines, “%ZHELP............ 103
system library routines, “%ZROWS........... 103
T
TCOMMIT ... 43
THEN .. 43, 79
transaction processing................. 73
BTIgEErS . . 95
TROLLBACK . ..o 44
TSTART ..o 44
Bypes ... 70
types, BOOLEAN it 70
types, COMPLEXt 70
types, custom......... ... oo i il 70
types, INTEGER i, 70
types, REAL........ . 70
types, STRING i 70

Index

USE . oo 45
utilities, fmadm........ oL 123
utilities, system management.................. 123

A%

variables, global...........ol 71
variables, intrinsic special 14
variables, localo il 76
variables, structured system.................... 54
VIEW .o 45

VIEW commands/functions, 16, total count of
error messages/view single error message. ... 125
VIEW commands/functions, 17,

intrinsic Z-commands....................... 125
VIEW commands/functions, 18,

intrinsic Z-functions 125
VIEW commands/functions, 19,

intrinsic special variables 125
VIEW commands/functions, 20,

break service code 125
VIEW commands/functions, 21, view

size of last global 125
VIEW commands/functions, 22, count

VIEW 22 aliases.........oooeeiiiiiinnn. 125
VIEW commands/functions, 23,

input buffer contents 125
VIEW commands/functions, 24, maximum

number of screen rows, 125
VIEW commands/functions, 25, maximum

number of screen columns 125
VIEW commands/functions, 26,

DO/FOR/XECUTE stack pointer.......... 125

VIEW commands/functions, 27,
DO/FOR/XECUTE stack pointer, on error .. 126

138

VIEW commands/functions, 29,

copy symbol table............... 126
VIEW commands/functions, 30,

inspect arguments............... 126
VIEW commands/functions, 31, count

environment variables 126
%%
WRITE ... 49
X
XECUTE. ..o 49
Z
z functions, user-defined 100
ZASSERT ... 49
ZBREAK 49
ZOONST .. 50
ZGOTO oo 50
ZHALT . 50
ZINSERT 50
ZJOB. 50
ZLOAD . .o 51
IMAP .. 51
INEW L 51
ZPRINT ... 51
ZQUIT . e 51
ZREMOVEo 51
ZSAVE . 51
ZTHROW ... e 52
ZTRAP ..o 52
ZUNMARP .. 52
ZWATCH. ..o 52
ZWITH. ..o 53
ZWRITE ... 53

	Introduction
	Production Readiness
	Contributors

	1 Document Conventions
	Formatting Conventions
	Definitions

	2 A Note on Standards
	3 FreeM Invocation
	Synopsis
	%SYSINIT Routine
	Command-Line Options
	Using FreeM for Shell Scripting

	4 The FreeM Environment Daemon
	5 The FreeM Direct-Mode Environment
	Direct-Mode Commands
	REPL Functionality

	6 Debugging
	Debugging Synopsis
	Debugging Commands

	7 Directives
	%DIALECT

	8 Intrinsic Special Variables
	$DEVICE
	$DIALECT
	$ECODE
	$ESTACK
	$ETRAP
	$HOROLOG
	$IO
	$JOB
	$KEY
	$PDISPLAY
	$PRINCIPAL
	$REFERENCE
	$QUIT
	$STACK
	$STORAGE
	$SYSTEM
	$TEST
	$TLEVEL
	$WITH
	$X
	$Y
	$ZA
	$ZB
	$ZCONTROLC
	$ZDATE
	$ZERROR
	$ZHOROLOG
	$ZINRPT
	$ZJOB
	$ZLOCAL
	$ZNAME
	$ZPRECISION
	$ZREFERENCE
	$ZSYSTEM
	$ZTIME
	$ZTRAP
	$ZUT
	$ZVERSION

	9 Intrinsic Functions
	$ASCII
	$CHAR
	$DATA
	$EXTRACT
	$FIND
	$FNUMBER
	$GET
	$INSTANCEOF
	$JUSTIFY
	$LENGTH
	$NAME
	$NEXT
	$ORDER
	$PIECE
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$RANDOM
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$TYPE
	$VIEW
	$ZBOOLEAN
	$ZCALL
	$ZCRC
	$ZDATA
	$ZDATE
	$ZEDIT
	$ZHOROLOG
	$ZKEY
	$ZLENGTH
	$ZLSD
	$ZM
	$ZNAME
	$ZNEXT
	$ZORDER
	$ZPIECE
	$ZPREVIOUS
	$ZREPLACE
	$ZSYNTAX
	$ZTIME

	10 OBJECT Methods
	$$TONUMBER
	$$TYPE
	$$VALUE

	11 STRING Methods
	$$ASCII
	$$DATA
	$$DISTANCE
	$$EXTRACT
	$$FIND
	$$FNUMBER
	$$JUSTIFY
	$$LENGTH
	$$PIECECOUNT
	$$PIECE
	$$REPLACE
	$$REVERSE
	$$TOLOWER
	$$TOUPPER
	$$TRANSLATE

	12 Commands
	@
	!
	!!
	ABLOCK
	ASTART
	ASTOP
	AUNBLOCK
	BREAK
	CLOSE
	DO
	ELSE
	FOR
	GOTO
	HALT
	HANG
	IF
	JOB
	KILL
	KSUBSCRIPTS
	KVALUE
	LOCK
	MERGE
	NEW
	OPEN
	QUIT
	READ
	SET
	TCOMMIT
	THEN
	TROLLBACK
	TSTART
	USE
	VIEW
	WRITE
	XECUTE
	ZASSERT
	ZBREAK
	ZCONST
	ZGOTO
	ZHALT
	ZINSERT
	ZJOB
	ZLOAD
	ZMAP
	ZNEW
	ZPRINT
	ZQUIT
	ZREMOVE
	ZSAVE
	ZTHROW
	ZTRAP
	ZUNMAP
	ZWATCH
	ZWITH
	ZWRITE

	13 Structured System Variables
	^$CHARACTER
	^$DEVICE
	^$DISPLAY
	^$EVENT
	^$GLOBAL
	^$JOB
	^$LOCK
	^$OBJECT
	^$ROUTINE
	^$SYSTEM
	^$WINDOW
	^$ZPROCESS
	^$ZRPI

	14 Operators
	Unary +
	Unary -
	+ (Add)
	+= (Add/Assign)
	++ (Postfix Increment)
	- (Subtract)
	-= (Subtract/Assign)
	-- (Postfix Decrement)
	* (Multiply)
	*= (Multiply/Assign)
	/ (Divide)
	/= (Divide/Assign)
	\ (Integer Divide)
	\= (Integer Divide/Assign)
	# (Modulo)
	#= (Modulo/Assign)
	** (Exponentiate)
	**= (Exponentiate/Assign)
	< (Less Than)
	<= (Less Than or Equal To)
	> (Greater Than)
	>= (Greater Than or Equal To)
	_ (Concatenate)
	_= (Concatenate/Assign)
	= (Equals)
	[(Contains)
] (Follows)
]] (Sorts After)
	? (Pattern Match)
	& (Logical AND)
	! (Logical OR)
	' (Logical NOT)
	@ (Indirect)

	15 Routines
	Routine Naming

	16 Types
	BOOLEAN
	COMPLEX
	INTEGER
	REAL
	STRING
	String Rules
	String Quoting Rules

	Custom Types (Classes)

	17 Globals
	Globals Overview
	Creating Globals
	Removing Globals
	Global Storage

	18 Concurrency Control
	Concurrency Control Overview
	Advisory Locks
	Transaction Processing
	Theory of Operation
	Using Transaction Processing
	BATCH Transactions
	SERIAL Transactions

	19 Local Variables
	Local Variables Overview
	Creating Local Variables
	Removing Local Variables

	20 Scoping
	Scoping Considerations for $TEST

	21 Decision Constructs
	22 Branch Constructs
	23 Loop Constructs
	24 Modular Programming
	Subroutines
	Extrinsic Functions

	25 Object-Oriented Programming
	Classes
	Class Overview
	Constructors
	Destructors

	Inheritance
	Runtime Polymorphism

	Methods
	Public and Private Variables
	Instantiating Objects
	Determining Object Class

	26 Libraries
	27 Sequential I/O
	28 Network I/O
	Opening and Connecting a Client Socket

	29 Extended Global References
	Standard Extended Global References

	30 Global Aliasing
	31 Global Mappings
	32 Asynchronous Event Handling
	Setting Up Async Event Handlers
	Registering an Asynchronous Event Handler
	Enabling Asynchronous Event Handling
	Disabling Asynchronous Event Handling
	Temporarily Blocking Asynchronous Event Handling

	33 Global Triggers
	34 Synchronous Event Handling
	35 GUI Programming with MWAPI
	36 User-Defined Z Commands
	37 User-Defined Z Functions
	38 User-Defined SSVNs
	39 Language Dialects
	40 System Library Routines
	^%ZCOLUMNS
	%SYSINIT
	^%ZHELP
	^%ZROWS

	41 Interrupt Handling
	42 Error Processing
	43 FreeM Error Codes
	44 System Configuration
	Installing FreeM
	Installation Methods
	Build Configuration
	Initial Configuration
	Creating Additional Environments
	Additional Customization

	45 Accessing FreeM from C Programs
	freem_ref_t Data Structure
	freem_ent_t Data Structure
	freem_init()
	freem_version()
	freem_set()
	freem_get()
	freem_kill()
	freem_data()
	freem_order()
	freem_query()
	freem_lock()
	freem_unlock()
	freem_tstart()
	freem_trestart()
	freem_trollback()
	freem_tlevel()
	freem_tcommit()
	freem_function()
	freem_procedure()

	A FreeM Administrator
	B FreeM VIEW Commands and Functions
	VIEW 16: Total Count of Error Messages/View Single Error Message
	VIEW 17: Intrinsic Z-Commands
	VIEW 18: Intrinsic Z-Functions
	VIEW 19: Intrinsic Special Variables
	VIEW 20: Break Service Code
	VIEW 21: View Size of Last Global
	VIEW 22: Count VIEW 22 Aliases
	VIEW 23: View Contents of Input Buffer
	VIEW 24: Maximum Number of Screen Rows
	VIEW 25: Maximum Number of Screen Columns
	VIEW 26: DO/FOR/XECUTE Stack Pointer
	VIEW 27: DO/FOR/XECUTE Stack Pointer (On Error)
	VIEW 29: Copy Symbol Table
	VIEW 30: Inspect Arguments
	VIEW 31: Count Environment Variables

	C Implementation Limits
	D US-ASCII Character Set
	E FreeM Project Coding Standards
	Module Headers
	Variable Naming
	Indentation and General Layout
	Brace Placement (Functions)
	Brace Placement (if-for-while-do)
	Labels and goto
	Preprocessor Conditionals
	coding standards, preprocessor conditionals
	Overall Program Spacing
	The switch() Statement
	Comments

	Index

