The FreeM Manual

THE OFFICIAL MANUAL OF FREEM
Version 0.7.3

John P. Willis

This manual is for FreeM, (version 0.7.3), which is a free and open-source implementation
of the M programming language and database system.
Copyright (©) 2020 Coherent Logic Development LLC
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover texts, and with no Back-Cover Texts.

Table of Contents

Introduction 1
Production Readiness 1
ContribDULOTS . o ot 1

1 FreeM Invocation.............. 3
1.1 SYNOPSIS - v v ettt e 3
1.2 Command-Line Optionsoooiiiiiii i 3
1.3 Using FreeM for Shell Scripting......... ... 3

2 The FreeM Direct-Mode Environment........ 5
2.1 Direct-Mode Commands. ..., 5
2.2 REPL Functionality......... .o, 7

3 Intrinsic Special Variables 8
3.1 SDEVICE . ..o 8
3.2 SECODE 8
3.3 SESTACK . ..o 8
3.4 SETRAP. ... 8
3.5 SHOROLOG . ..o e e 8
3.6 BIO o 8
3.7 BTOB . 8
3.8 BKE Y 8
3.9 SPRINCIPAL ... e 8
300 SQUIT. ..t 8
311 BSTACK . . oo 9
3.12 FSTORAGE ... 9
313 BSY STEM ..o 9
314 ST EST . 9
3.15 STLEVEL ..o 9
3.16 STRESTART ... 9
31T X 9
318 Y 9
319 S A 9
3.20 BB . 10
3.21 $ZCONTROLC . .. i 10
3.22 SZDATE. ... 10
3.23 SZERROR 10
.24 S 10
3.25 S$ZHOROLOG ..o 10
3.26 SZINRP T 10
3.27 SZJOB .o 10
3.28 SZLOCAL ... 10

3.20 $ZMATCHCONTROL . . oo 10
3.30 $ZMATCHNUMERICt 10
3.31 $ZMATCHPUNCTUATION ..o 10
3.32 $ZMATCHALPHABETIC . ..ottt 10
3.33 $ZMATCHLOWERCASE 10
3.34 $ZMATCHUPPERCASE . ..o i 11
3.35 $ZMATCHEVERYTHINGttt 11
3.36 $ZPRECISION . .ottt i, 11
3.37 $ZREFERENCE. . ..ottt i 11
3.38 BZSY STEM. . oo 11
3.39 SZTIME . ..o e 11
3.40 SZTRAP ..o 11
341 SZVERSION . . .ot 11

Intrinsic Functions 12
A1 SASCII . .o 12
4.2 SCHAR .o 12
4.3 SDATA « o 12
4.4 SEXTRACT ..o e 12
A5 SEIN D . o 12
4.6 SENUMBER . ..o 12
A7 SGET oo 12
4.8 SIJUSTIFY .ot i 12
4.9 SLENGTH. ..ot e 12
410 SN AME ..o 12
411 BNEX T .o 12
412 SORDER . ..ottt 12
413 SPIECE . ..o 13
414 SQLENGTH ..ottt e e 13
4.15 SQSUBSCRIPTt e e e 13
416 SQUERY .ottt 13
417 SRANDOM . .o 13
4.18 SREVERSE ... o 13
419 SSELECT ..ottt 13
4.20 SSTACK . .o, 13
421 ST E X T .o 13
4.22 STRANSLATE .. .ot 13
4.23 SVIEW . oo 13
4.24 S$ZBOOLEAN . . oo 14
4.25 SZCALL . .o 14
4.26 SZCR . . oo 14
A4.27 SZCRC . o 14
428 SZD AT A . . 14
4.29 SZDATE . . o, 14
4.30 SZEDIT . oo 14
4.31 $ZHOROLOG .. oot e 14
4.32 SZH T . o 15
4.33 SZKEY .o 15

ii

434 SZLENGTH . ..o e 15
4.35 BZLSD . o e 15
436 SZM . o 15
4.37 SZNAME ..o 15
4.38 BZINE X T .ot 15
4.39 $ZORDER. ..., 15
4.40 SZPIECE ... o e, 15
4.41 $ZPREVIOUS . .ot i, 15
4.42 S$ZREPLACE . ..o 15
443 BZS Y N T A X oot 15
444 SZSORT . .. oo 15
4.45 SZTIME . .o 15
A.A46 SZZIP . o 15

Commands............. ... 16
5.1 ABLOCK . oo 16
5.2 AS T AR .. 16
5.3 ASTOP ... 16
5.4 AUNBLOCGCK ... s 17
5.5 BREAK .o 17
5.6 CLOSE . . o 18
. T DO 18
5.8 ELSE ..ttt 18
5.9 FOR . .o 18
510 GOTO . et 18
5.1 HALT .o 18
512 HANG . .o 18
513 TF o 18
514 JOB oo 18
505 KILL o oot e 18
5.16 KSUBSCRIPTS ...t e 18
5.7 KVALUER . . 19
BAS LOCK . ot 19
519 MERGE ...t 19
5.20 NEW .ot 19
5.21 OPEN . . 20
522 QUIT . .ottt e 21
523 READ ..o 21
5.24 SET ot 21
5.25 TCOOMMIT . .o e e 21
5.26 TRESTART . ..o e 21
527 TROLLBACK ...t 21
5.28 TSTART . ..ot 21
5.20 USE ..ottt 21
0.30 VIEW L 22
5.31 WRITE . .. 22
5.32 XECUTEt 22
5.33 ZALLOCATE. ..o 22

iii

5.34 ZASSERT ... 22
535 ZBREAK ... 22
5.36 ZDEALLOCATE e 22
5.37 GO . o 22
5.38 ZHALT ..o 22
5.39 ZINSERTo 22
5.40 ZJOB ... 22
541 ZLOAD 22
5.42 ZNEW . 22
0.43 ZPRINT ... 23
BAA ZQUIT .o 23
545 ZREMOVE o 23
546 ZSAVE ..o 23
5.A7 ZTRAP . 23
548 ZWATCH. ... 23
549 ZWRITE ... 24

Structured System Variables................. 25
6.1 "SCHARACTER.ot 25
6.2 "SDEVICE ... 25
6.3 “EDISPLAY ..o 26
6.4 “SEVENT ... 26
6.5 "SGLOBAL.o 26
6.6 “8JOB ... 26
6.7 “SLOCK . .. 27
6.8 “EPDISPLAY ..ot 27
6.9 “SROUTINE. ... 27
6.10 "SSYSTEM . ..o 27
6.11 “SWINDOW . ..o 27
6.12 "S$ZPROCESS ... 27

Operators.............. 29
T L UNary oot 29
7.2 UDarY = oot 29
T3 1 (A) e 29
74 4= (Add/ASSIBN) .. oo oot 29
7.5 ++ (Postfix Increment) 29
7.6 - (Subtract).... ..o 29
7.7 -= (Subtract/Assign) 29
7.8 — (Postfix Decrement)oooiuiiiiiiiiiiii i, 29
7.9 K (Mulbiply) ..o 29
7.10 *= (Multiply/Assign)o 29
TAL [/ (DIVAR) « oo 29
7.12 /= (Divide/ASSIgN)ottt 29
7.13 \ (Integer Divide).......oovuirieniiii e 29
7.14 \= (Integer Divide/Assign)c..coiiiiiiiiiiiia.. .. 29
715 # (Modulo). ..o 29
7.16 #= (Modulo/ASSIgn)ooviiiii 29

iv

7.17 FF (Exponentiate)...........oiiiiii e 29

7.18 **= (Exponentiate/ASSign)t 29
7.19 < (Less Than)......oooeieiiii e 29
7.20 <= (Less Than or Equal To)c.ooiiiiiiiiiiiin... 30
7.21 > (Greater Than) 30
7.22 >= (Greater Than or Equal To)............................. 30
7.23 _ (Concatenate)o.vuuuir it 30
7.24 _= (Concatenate/ASSIgN)c.uuiriiii 30
725 = (Equals).......cooii 30
7.26 [(Contains)......oouununiiii e 30
7.27 J(FOlOWS) ..o 30
7.28] (Sorts After)....... ... 30
7.29 7 (Pattern Match) ... 30
7.30 & (Logical AND) ... 30
7.31 ! (Logical OR)oini 30
7.32 7 (Logical NOT)ooiii 30
7.33 Q@ (Indirect)ouiiini 30
8 Sequential I/O........... 31
9 Network I/O....... i, 32
9.1 Opening and Connecting a Client Socket 32
10 Asynchronous Event Handling.............. 33
10.1 Setting Up Async Event Handlers............................ 33
10.2 Registering an Asynchronous Event Handler.................. 33
10.3 Enabling Asynchronous Event Handling 34
10.4 Disabling Asynchronous Event Handling...................... 34
10.5 Temporarily Blocking Asynchronous Event Handling 34
11 Synchronous Event Handling................ 35
12 GUI Programming with MWAPI........... 36
13 User-Defined Z Commands.................. 37
14 User-Defined Z Functions 38
15 User-Defined SSVs........................... 39
16 System Library Routines.................... 40
16.1 “%ZCOLUMNS. . 40
16.2 ~%ZFREEM. e 40
16.3 “HZHELP . ..ot 40

16.4 “HZROWS ..o 40

17 Error Processing 41
18 Debugging............... ... L. 42
19 System Configuration........................ 43
19.1 Imstalling FreeM 43
19.2 Namespaces OVerview.ouueeriiniiiiiiiiiieeeenannns 43
19.3 Listing Namespacescoouuttiiiiiiiiiiiiiiii .. 43
19.4 Adding Namespaces.euuutineine i, 44
19.5 Removing Namespacesccoovviiiiiiiiiiieennnnnnnn. 44
19.6 Importing Routines......... ..., 44
20 Accessing FreeM from C Programs......... 46
20.1 freem_ref_t Data Structure..................... 46
20.2 freem_ent_t Data Structureol 47
20.3 freem_init()o.ouiuiii 48
20.4 freem_version()o.iiii i 49
20.5 freem_set() ... 49
20.6 freem_get()ouii i 50
20.7 freem_Kill() ... 51
20.8 freem_data()ouitiii 52
20.9 freem_order() ... 52
20.10 freem_query().......ooniiii 52
20.11 freem_lock()o 52
20.12 freem_unlock().......ooiuiii i 52
20.13 freem _tstart().........o.ouinii i 52
20.14 freem_trestart()...... ... 52
20.15 freem_trollback()oo i 52
20.16 freem_tlevel()..........ouiiiii 53
20.17 freem_tcommit()........o.iii i 53
20.18 freem_function()o 53
20.19 freem_procedure() ... 53
Appendix A FreeM Administrator 54
Appendix B FreeM Legacy Utilities........... 55
B.1 Global Compactor (gcompact)coooiuiiiiniuiinan... 55
B.2 Block Examiner (gfix)oo i 55
B.3 Global Lister (gl)......cooviiiiii 55
B.4 Lock Examiner (glocks)..............ooiiiiiiiiii 55
B.5 Global Repair Tool (grestore).................ooiiiiiiiia. 55
B.6 Global Validator (gverify)..................o i 56
B.7 Namespace Manager (namespace)............oouoeueuenenenn.. 56

B.8 Routine Import (ri)....... .o 56

vi

Appendix C FreeM VIEW Commands and

Functions 58
C.1 VIEW 16: Total Count of Error Messages/View Single Error
MESSAZE -+« v e ettt 58
C.2 VIEW 17: Intrinsic Z-Commandscoooiaa... 58
C.3 VIEW 18: Intrinsic Z-Functions...............ooo. 58
C.4 VIEW 19: Intrinsic Special Variables 58
C.5 VIEW 20: Break Service Code.............ccoiiiiiiiiia... 58
C.6 VIEW 21: View Size of Last Global........................... 58
C.7 VIEW 22: Count VIEW 22 Aliasesc.coviiiiiiiia... 58
C.8 VIEW 23: View Contents of Input Buffer..................... 58
C.9 VIEW 24: Maximum Number of Screen Rows................. 58
C.10 VIEW 25: Maximum Number of Screen Columns 58
C.11 VIEW 26: DO/FOR/XECUTE Stack Pointer................ 58
C.12 VIEW 27: DO/FOR/XECUTE Stack Pointer (On Error).... 59
C.13 VIEW 28: Switch Symbol Table..................... 59
C.14 VIEW 29: Copy Symbol Table.................c.ooiiia.. 59
C.15 VIEW 30: Inspect Argumentscooveiiiiina.... 59
C.16 VIEW 31: Count Environment Variables..................... 59
Appendix D Implementation Limits........... 60
Appendix E US-ASCII Character Set......... 61
Appendix F FreeM Project Coding Standards
.. 62
F.1 Module Headers ... 62
F.2 Variable Naming........ ... 62
F.3 Indentation and General Layout, 62
F.4 Brace Placement (Functions).................ooooiiiiii... 63
F.5 Brace Placement (if-for-while-do) 63
F.6 Labelsand gotocooo i 64
F.7 Preprocessor Conditionals............... ..o i, 64
F.8 coding standards, preprocessor conditionals 64
F.9 Overall Program Spacingcouiiiiiiiiiiinin... 64
F.10 The switch() Statement.......... ... i, 64
FI1 Comments.ouuiii i 65
Appendix G Conformance Clause 66

vii

Introduction 1

Introduction

FreeM started its life as FreeMUMPS, written for MS-DOS and ported to SCO UNIX by a
mysterious individual going by the name of "Shalom ha-Ashkenaz". It was released to MUG
Deutschland in 1998. In 1999, Ronald L. Fox ported FreeM to Red Hat Linux 5. Thereafter,
maintenance was taken over by the Generic Universal M Project, which changed its name
first to Public Standard MUMPS and then by popular request to FreeM.

When GT.M was open-sourced in late 1999, FreeM and GUMP were essentially abandoned.
L.D. Landis, the owner of the original GUMP SourceForge project, and one of FreeM’s
significant contributors, passed maintenance of FreeM and ownership of its SourceForge
project to John Willis in 2014. At this point, FreeM would not compile or run on modern
Linux systems, so steps were taken to remedy the most pressing issues in the codebase.
Limitations on the terminal size (previously hard-coded to 80x25) were lifted, and new
$VIEW functions were added to retrieve the terminal size information. $X and $Y intrinsic
special variables were updated to support arbitrary terminal sizes, and FreeM was once
again able to build and run.

In February of 2020, work began in earnest to build a development and support infrastruc-
ture for FreeM and begin the careful process of refining it into a more stable and robust
product.

Production Readiness
FreeM is not yet production-ready. There are several show-stopping bugs that preclude a
general release for public use:

e SSVs, aside from ~$J0B, "$DEVICE, “$EVENT, and ~$ZPROCESS are not implemented.

e VIEW commands and $VIEW functions are used extensively to configure and inspect the
run-time behavior of FreeM, rather than the "canonical" SSV-based approach.

e Server sockets are not yet implemented.

Contributors

Current contributors denoted with a + following their name and role.
e Shalom ha-Ashkenaz (Original Implementer)
e John Best (IBM i and OS/400)
e Jon Diamond (Library, Utilities, Conformance)
e Ronald L. Fox (Initial port to Red Hat 5/libc-6)
e Winfried Gerum (Code, Advice, MTA coordination)
e Greg Kreis (Hardhats coordination, Dependencies)
e Larry Landis (Coordination, Code, Documentation)
e Frederick D.S. Marshall (MDC Standards Conformance) +
e Lloyd Milligan (Code, Testing, Documentation)
e Steve Morris (Code, Microsoft)
e John Murray (Code, Conformance)

e Wilhelm Pastoors (Testing, Documentation)

Introduction

e Kate Schell (Coordination, Conformance, MTA, MDC, Advice)

e Lyle Schofield (Advice, Prioritization, Tracking, Project Management)
e Jim Stefanik (Linux on s390x, IBM AIX, IBM z/0OS)

e Axel Trocha (Code, Utilities)

e Dick Walters (Project Lead, Chief Coordinator, MTA)

e David Whitten (QA Test Suite, MDC, Advice) +

e David Wicksell (Debugging, Code, Testing) +

e John Willis (Current Maintainer and Project Lead) +

e Steve Zeck (Code)

Chapter 1: FreeM Invocation 3

1 FreeM Invocation

1.1 Synopsis

$./freem [OPTIONS...] [[-r <entryref>] | [--routine=<entryref>]]
When FreeM loads, it searches the SYSTEM namespace for the ~%ZFREEM routine, and begins
executing it.

When -r or --routine are passed on the command line, FreeM will load and run the
specified routine instead of ~ZFREEM. Beginning with FreeM 0.1.7, routines invoked in this
manner are no longer required to perform their own namespace setup with VIEW commands.

1.2 Command-Line Options

‘~h’, ‘~-hardcopy’
Enables hardcopy mode, echoing all output to a disk file. By default, this
disk file is ‘\$freem_base/<namespace-name>/freem.hardcopy’, but can be
changed with the following command:
USER> VIEW 13:"‘</path/to/hardcopy/file>’"

The file used for hardcopy mode may also be specified in ‘/etc/freem.conf’
or ‘~/.freemrc’.

‘~f’, ‘=-filter’
Allows your M routines to be used as UNIX filters.

‘-n’; ‘--noclear’

Disables automatic screen clearing when FreeM loads.

‘-g’, ‘-—standard’
Restricts the use of non-standard language features, including $Z. .. intrinsic
special variables, $Z. .. intrinsic functions, Z... commands, as well as VIEW
and $VIEW.

‘=i’ ‘——import’

Causes your UNIX environment variables to be imported into FreeM’s local
symbol table.

‘-r <entryref>’, ‘--routine=<entryrer>’
Causes <entryref> to be executed at load, instead of ~%ZFREEM.

‘-n <namespace-name>’, ‘-—namespace=<namespace-name>’
Selects the FreeM namespace to be entered on startup. Must be defined in

‘/etc/freem.conf’.

1.3 Using FreeM for Shell Scripting

FreeM M routines can be used as shell scripts by providing a shebang line beginning with
#!/path/to/freem as the first line of the routine. The following example presumes that
FreeM is installed at ‘/usr/local/bin/freem’ and uses the USER namespace:

Chapter 1: FreeM Invocation

#!/usr/local/bin/freem

MYSCRIPT ;

SET ~$J0B($J0B, "NAMESPACE")="USER"

WRITE "This is output from an M routine used as a shell script.",!

Q

Currently, the script needs to have a ‘.m’ file extension. You will also need to select an appro-
priate namespace in your script using the SET ~$JOB($J0OB, "NAMESPACE")="<namespace>"
command before attempting to call other routines or access globals.

You will also need to set the script’s permissions to executable in order for this to work:

$ chmod +x myscript.m

Chapter 2: The FreeM Direct-Mode Environment 5

2 The FreeM Direct-Mode Environment

The FreeM direct-mode environment is the mode entered when FreeM is loaded without
the use of ‘-r <entryref>’ or ‘--routine=<entryref>’:

Coherent Logic Development FreeM
Version 0.7.3-x86_64-Linux (commit 4ececff; jpw AT pasithea Tue 13 Oct 2020 09:03:27 A

*

* %
x %
KKK KKK KKK KKK KK
X Xk * X
* FreeM =x
x % x
KKK KKK KKK KKK KKK
x %
* * Copyright (C) 1998 MUG Deutschland
* Copyright (C) 2014, 2020 Coherent Logic Development LLCJ]

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published byj]
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

PID: 3343
Principal I/0: 0:"/dev/pts/5"
USER>

The prompt (USER>) indicates the currently-active namespace. If any uncommitted direct-
mode transactions have been started, the prompt will change to reflect the current value of
$TLEVEL:

TL1:USER>
In the above example, TL1 indicates that $TLEVEL is currently 1.

2.1 Direct-Mode Commands

When you are in direct mode, in addition to M commands, a number of internal commands
are available to help developers be more productive:

Chapter 2: The FreeM Direct-Mode Environment 6

events

history

Accesses FreeM online help. Requires GNU info(1) to be installed on your
local system.

Writes a list of event classes and their ABLOCK counts:
USER> events

Event Class Processing Mode ABLOCK Count
COMM Disabled 0
HALT Disabled 0
IPC Disabled 0
INTERRUPT Disabled 0
POWER Disabled 0
TIMER Disabled 0
USER Disabled 0
WAPI Disabled 0

Prints a list of all the direct-mode commands you have entered across all ses-
sions.

rcl <history-index>

Allows you to recall command number <history-index> and run it again. Obtain
the value for <history-index> from the output of the history command.

I<external-command>

tdump

Invokes a shell to run <external-command> from within FreeM. This temporarily
disables SIGALRM handling in FreeM, which may interrupt the use of event-
driven M programming commands including ESTART and ESTOP.

If the < character is supplied immediately preceding <external-command>,
FreeM will append the contents of M local variable % to <external-command>
as standard input.

If the > character is supplied immediately preceding <external-command>,
FreeM will take the standard output stream of <external-command> and store
it in M local variable ¥%.

% contains the number of lines in the input or output. %(1)..%(n) contains the
data for lines 1-n.

Writes detailed information about the status of any pending transactions to
$PRINCIPAL.

If you issue a HALT command at the direct-mode prompt, you will exit out of FreeM.
However, if you issue a HALT command when $TLEVEL is greater than zero, you will be
given the opportunity to commit or rollback any pending transactions:

USER> TSTART

TL1:USER> SET "MYGLOBAL=1

Chapter 2: The FreeM Direct-Mode Environment 7

TL1:USER> HALT
UNCOMMITTED TRANSACTIONS EXIST:

$TLEVEL 1x
Operations for Transaction ID: k8xjlde
1: action = 0 key = "MYGLOBAL data =1

Would you like to c)ommit or r)ollback the above transactions and their operations? ($

Transactions have been rolled back.

In the above example, the user selected r to rollback the single pending transaction.

2.2 REPL Functionality

FreeM direct mode allows you to enter M expressions directly from the direct-mode prompt,
as long as they begin with a number:

USER> S DENOM=10

USER> 100/DENCM

10
USER>

Such expressions will be immediately evaluated, and the result printed on $PRINCIPAL.

Chapter 3: Intrinsic Special Variables 8

3 Intrinsic Special Variables

3.1 $SDEVICE

Returns the status of the device currently in use, and is writable.

If $DEVICE returns I, an error condition exists on the current device.

3.2 SECODE

Returns a comma-delimited list of error conditions currently present, and is writable. An
empty $ECODE indicates no errors.

3.3 SESTACK

Returns the depth of the program execution stack since the last time $ESTACK was NEWed.
NEW-able, but not SET-able. Differs from the $STACK ISV in that it is NEW-able, and resets
to a value of 0 when NEWed.

3.4 SETRAP

Sets or retrieves the M code that is run when an error is encountered or $ECODE is set to a
non-blank value. $ETRAP code executes when $ECODE becomes non-blank.

3.5 SHOROLOG

Returns a string containing the current date and time as <days>,<seconds>, where <days>
represents the number of days since the M epoch (midnight on 31 December 1840), and
<seconds> represents the number of seconds since the most recent midnight.

3.6 $IO

Represents the current input/output device. Read-only.

3.7 $JOB

Represents the process ID of the FreeM instance currently in use.

3.8 $SKEY

Represents the sequence of control characters that terminated the last READ command on
$10.

3.9 SPRINCIPAL

Represents the primary input/output device. Usually a terminal or virtual terminal.

3.10 $QUIT

If the current execution context was invoked as an extrinsic function, $QUIT returns 1.
Otherwise, returns 0.

When $QUIT returns 1, a subsequent QUIT command must have an argument.

Chapter 3: Intrinsic Special Variables 9

3.11 $STACK

Represents the current stack level.

3.12 $STORAGE

Represents the number of bytes of free space available in FreeM’s heap.

3.13 $SYSTEM
Returns the MDC system ID of FreeM.

3.14 $TEST

$TEST is a writable, NEW-able ISV that is 1 if the most recently evaluated expression was
true. Otherwise, returns 0.

$TEST is implicitly NEWed when entering a new stack frame for extrinsic functions and
argumentless DO. $TEST is not implicitly NEWed when a new stack frame is entered with an
argumented DO.

3.15 $STLEVEL

Returns a numeric value indicating the current level of transaction nesting in the process.
When $TLEVEL is greater than 0, uncommitted transactions exist.

3.16 STRESTART

Returns an empty string, as FreeM transaction processing does not yet support restartable
transactions.

3.17 $X

Represents the current column position of the FreeM cursor.

Non-Standard Behavior

In FreeM, setting $X will move the FreeM cursor.

3.18 Y

Represents the current row position of the FreeM cursor.

Non-Standard Behavior

In FreeM, setting $Y will move the FreeM cursor.

3.19 $ZA

On the HOME device, always 0. On other devices, represents the byte offset to the beginning
of the file.

Chapter 3: Intrinsic Special Variables 10

3.20 $ZB
Represents the last keystroke.

3.21 $ZCONTROLC

3.22 $ZDATE
Returns the current date, in YYYY/MM/DD format.

3.23 $ZERROR

Returns the last error message.

3.24 $ZF

3.25 $ZHOROLOG
Output $HOROLOG-style time, with the addition of milliseconds.

3.26 $ZINRPT
Gets or sets the interrupt enable/disable flag.

3.27 $ZJOB

Returns the $J0B value of the parent process (used in subroutines started with the JOB
command).

3.28 $ZLOCAL

Returns the last local variable referenced.

3.29 $ZMATCHCONTROL

Returns control characters.

3.30 $ZMATCHNUMERIC

Returns all numbers 0-9.

3.31 $ZMATCHPUNCTUATION

Returns all punctuation characters.

3.32 $ZMATCHALPHABETIC

Returns all alphabetic characters.

3.33 $ZMATCHLOWERCASE

Returns all lowercase characters.

Chapter 3: Intrinsic Special Variables 11

3.34 $ZMATCHUPPERCASE

Returns all uppercase characters.

3.35 $ZMATCHEVERYTHING

Returns control characters, numbers, punctuation, and alphabetic characters.

3.36 $ZPRECISION

Gets or sets the number of digits of numeric precision used for fixed-point decimal arith-
metic. Defaults to 100 digits.

3.37 $ZREFERENCE

Returns the last glun referenced.

3.38 $ZSYSTEM

3.39 $ZTIME

Returns the system time in HH:MM:SS (24-hour) format.

3.40 $ZTRAP

Sets or retrieves the entryref to be executed when an M program execution error occurs
under FreeM-style or DSM 2.0-style error processing.

In FreeM-style error processing, $ZTRAP is specific to each program execution stack level.
In DSM 2.0-style error processing, $ZTRAP is the same for all program execution stack levels.

When FreeM encounters an error, if $ZTRAP is nonempty and $ETRAP is empty, FreeM will
perform an implicit GOTO to the entryref indicated in $ZTRAP.

If $ETRAP is nonempty when FreeM encounters an error, the value of $ZTRAP is ignored,
whether FreeM-style or DSM 2.0-style error processing is enabled.

3.41 $ZVERSION

Chapter 4: Intrinsic Functions 12

4 Intrinsic Functions

4.1 $ASCII

Returns the ASCII code (in decimal) for one character in a string.
SET RESULT=$ASCII(<string>[,<index>])

If <index> is not supplied, $ASCII will return the ASCII code of the first character. Other-
wise, returns the ASCII code of the character at position <index>.

4.2 $CHAR

Returns a string of characters corresponding to a list of ASCII codes.
SET RESULT=$CHAR(<ascii-code>[,<ascii-code>,...])

4.3 $DATA

Returns a numeric value 0, 1, 10, or 11, depending on whether a referenced node is defined,
has data, or has children:

SET RESULT=$DATA (<node>)
The return values are as follows:

0: <node> is undefined

1: <node> has data but no children
10: <node> has children but no data
11: <node> has children and data

4.4 SEXTRACT
4.5 SFIND

4.6 SFNUMBER
4.7 $GET

4.8 $JUSTIFY
4.9 SLENGTH
4.10 SNAME
4.11 SNEXT

4.12 $ORDER

Chapter 4: Intrinsic Functions 13

4.13 $PIECE

4.14 $QLENGTH
4.15 $QSUBSCRIPT
4.16 $QUERY

4.17 $SRANDOM
4.18 $REVERSE
4.19 $SELECT

4.20 $STACK

Returns information about the program execution stack. The $STACK intrinsic function has
both a one-argument form and a two-argument form.

Syntax (One-Argument)

$STACK (<num>)
If num is 0, returns the command with which this FreeM instance was invoked.
If num is -1, returns the current program execution stack level.

If num represents a valid program execution stack depth above 0, returns one of the following
values indicating the reason for which the referenced program execution stack level was
created:

$$ If $STACK (<num>)="8$$", program execution stack level num was created as the
result of an extrinsic function call

<m-command>
If $STACK (<num>) returns a valid M command, the referenced program execu-
tion stack level was created as a result of the m-command command.

Syntax (Two-Argument)
$STACK (<num>, " [ECODE | MCODE | PLACE] ")

Returns the error codes, M program code, or entryref applicable to the action that created
program execution stack level num.

4.21 $STEXT
4.22 $STRANSLATE

4.23 SVIEW

Chapter 4: Intrinsic Functions

4.24 $ZBOOLEAN

Performs boolean-operation on numeric arguments A and B.

Syntax
SET RESULT=$ZBO0LEAN(A,B,boolean-operation)
$ZBOOLEAN Operations (boolean-operation values)

0 Always false
1 A AND B

2 A AND NOT B
3 A

4 NOT A AND B
5 B

6 A XOR B

7 AORB

8 A NOR B

9 A EQUALS B
10 NOT B

11 A OR NOT B
12 NOT A

13 NOT AOR B
14 A NAND B

15 Always true
4.25 $ZCALL
4.26 $ZCR

4.27 $ZCRC
4.28 $ZDATA

4.29 $ZDATE
4.30 $ZEDIT

4.31 $ZHOROLOG

14

Chapter 4: Intrinsic Functions

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

$ZHT
$ZKEY
$ZLENGTH
$ZLSD

$ZM
$ZNAME
$ZNEXT
$ZORDER
$ZPIECE
$ZPREVIOUS
$ZREPLACE
$ZSYNTAX
$ZSORT
$ZTIME

$Z71P

15

Chapter 5: Commands 16

5 Commands

5.1 ABLOCK

Increments the event block counter for one or more event classes. While the block counter
for an event class is greater than zero, registered event handlers for that event class will not
execute, and will instead be queued for later execution once the block counter reaches zero
(all blocks removed).

An implicit ABLOCK on all event classes occurs when an event handler subroutine is executing.
As soon as a QUIT is reached within an event handler, an implicit ABLOCK will occur.

Syntax
ABLOCK : postcondition

In its argumentless form, ABLOCK increments the block counter for all event classes, provided
the optional postcondition is either true or omitted.

ABLOCK :postcondition evclassl...,evclassN

In its inclusive form, ABLOCK increments the block counters for all event classes named in
the list, provided the optional postcondition is either true or omitted.

ABLOCK :postcondition (evclassl...,evclassN

In its exclusive form, ABLOCK increments the block counters for all event classes except for
those named in the list, provided the optional postcondition is either true or omitted.

5.2 ASTART

Enables asynchronous event handling for one or more event classes.
Syntax
ASTART : postcondition

In its argumentless form, ASTART enables asynchronous event handling for all event classes,
provided the optional postcondition is either true or omitted.

ASTART :postcondition evclassl...,evclassN

In its inclusive form, ASTART enables asynchronous event handling for all event classes named
in the list, provided the optional postcondition is either true or omitted.

ASTART :postcondition (evclassl...,evclassN)

In its exclusive form, ASTART enables asynchronous event handling for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

5.3 ASTOP

Disables asynchronous event handling for one or more event classes.
Syntax
ASTOP :postcondition

In its argumentless form, ASTOP disables asynchronous event handling for all event classes,
provided the optional postcondition is either true or omitted.

Chapter 5: Commands 17

ASTOP :postcondition evclassl...,evclassN

In its inclusive form, ASTOP disables asynchronous event handling for all event classes named
in the list, provided the optional postcondition is either true or omitted.

ASTOP:postcondition (evclassl...,evclassN)

In its exclusive form, ASTOP disables asynchronous event handling for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

5.4 AUNBLOCK

Decrements the event block counter for one or more event classes.
Syntax
AUNBLOCK : postcondition

In its argumentless form, AUNBLOCK decrements the block counter for all event classes,
provided the optional postcondition is either true or omitted.

AUNBLOCK : postcondition evclassl...,evclassN

In its inclusive form, AUNBLOCK decrements the block counters for all event classes named
in the list, provided the optional postcondition is either true or omitted.

AUNBLOCK : postcondition (evclassl...,evclassN

In its exclusive form, AUNBLOCK decrements the block counters for all event classes except
for those named in the list, provided the optional postcondition is either true or omitted.

5.5 BREAK

Interrupts running routine to allow interactive debugging.
Syntazx
BREAK :postcondition

In its argumentless form, BREAK suspends execution of running code, provided the optional
postcondition is true or omitted.

BREAK :postcondition breakflag

In its single-argument form, BREAK sets Ctri-C handling and error handling characteristics,
provided the optional postcondition is true or omitted. The following table enumerates the
possible values of breakflag

0 Disables Ctri-C handling

-2 Enables normal FreeM error handling

2 Enables Digital Standard MUMPS v2 error handling
"default"

Enables Ctrl-C handling

Chapter 5: Commands 18

5.6 CLOSE

Closes an input/output device.
Syntaz
CLOSE:postcondition

In its argumentless form, CLOSE closes all I/O devices except for device 0 (the HOME device),
provided the optional postcondition is true or omitted.

CLOSE:postcondition channel

In its single-argument form, CLOSE closes the I/O device associated with channel channel,
provided that channel represents a currently-open device, and the optional postcondition is
true or omitted.

5.7 DO

5.8 ELSE
5.9 FOR
5.10 GOTO
5.11 HALT
5.12 HANG
5.13 IF
5.14 JOB
5.15 KILL

5.16 KSUBSCRIPTS
Kills only the descendant subscripts (but not the data value) of a referenced global, local,
or SSV (where allowed).
Syntax
KSUBSCRIPTS :postcondition varld,...

In the above inclusive form, KVALUE will kill the descendant subscripts at each local, global,
or SSV node specified in the list (provided that the optional postcondition is true or omit-
ted), but will leave the data value intact.

Note The below argumentless and exclusive forms of KSUBSCRIPTS are not implemented in
FreeM, as of version 0.3.3, but are planned for a future release.

Chapter 5: Commands 19

KSUBSCRIPTS :postcondition

In the above argumentless form, KSUBSCRIPTS will kill the descendant subscripts at the root
of each local variable (provided that the optional postcondition is true or omitted), but will
leave data values intact.

KSUBSCRIPTS :postcondition (varl,...)

In the above exclusive form, KSUBSCRIPTS will kill the descendant subscripts of all local vari-
ables, with the exception of those named in the list, provided that the optional postcondition
is true or omitted, while leaving their data values intact.

5.17 KVALUE

Kills only the data value (but not descendant subscripts) of a referenced global, local, or
SSV (where allowed).

Syntaz
KVALUE:postcondition varld,...

In the above inclusive form, KVALUE will kill the data values at each local, global, or SSV
node specified in the list (provided that the optional postcondition is true or omitted), but
will leave descendant subscripts intact.

Note The below argumentless and exclusive forms of KVALUE are not implemented in FreeM,
as of version 0.7.3, but are planned for a future release.

KVALUE : postcondition

In the above argumentless form, KVALUE will kill the data values at the root of each lo-
cal variable (provided that the optional postcondition is true or omitted), but will leave
descendant subscripts intact.

KVALUE :postcondition (varl,...)

In the above exclusive form, KVALUE will kill the data values of all local variables, with the
exception of those named in the list, provided that the optional postcondition is true or
omitted, while leaving their descendant subscripts intact.

5.18 LOCK

5.19 MERGE

Merges the contents of one global, local, or SSV subtree to another global, local, or SSV.
Syntax
MERGE A="$JOB

The above example will merge the “$J0B SSV into the A local. Note that the FreeM
implementation of MERGE does not yet support multiple merge arguments. Returns error
M19 if either the source or the target variable are descendants of each other.

5.20 NEW

Chapter 5: Commands 20

5.21 OPEN

Opens sequential or socket I/O devices and files and associates them with a numeric FreeM
input/output channel.

Syntax (Sequential Files)
OPEN:postcondition channel:"filename/access-mode"

Opens filename for reading and/or writing, and associates the file with FreeM I/O channel
channel, provided that the optional postcondition is true or omitted. The below table lists
the valid options for access-mode:

r Read-only access

W Create a new file for write access

a Write access; append to existing file

r+ Read/write access

a R
I/O Path

You cannot specify a fully-qualified filesystem path in the FreeM OPEN command.
By default, FreeM will assume that filename exists in the directory indicated in
~$J0B($J0B,"CWD"). If you wish to access files in other directories, you must first set the
I/O Path in ~$JOB($JOB, "IOPATH").

The following example will set the I/O path to /etc:

SET ~$JOB($JOB,"IOPATH")="/etc"
- J

If channel was already OPENed in the current process, calling OPEN on the same channel
again implicitly closes the file or device currently associated with channel.

Syntaz (Network Sockets)

Network sockets use a dedicated range of FreeM I/0 channels ranging from 100-255. OPENing
a socket 1/O channel does not implicitly connect the socket. Connecting the socket to the
specified remote host is accomplished by the /CONNECT control mnemonic supplied to the
USE command.

OPEN:postcondition socket-channel:"hostname-or-address:port:address—-family:connectio
typell
Socket Parameters

socket-channel
The socket I/O channel to use. This must be in the range of 100-255.

hostname-or-address
The hostname or IP address to connect to. If a hostname is supplied, OPEN will
implictly do a name lookup, the mechanism of which is typically determined
by the configuration of /etc/nsswitch.conf on most UNIX and UNIX-like
platforms.

port The TCP or UDP port to which the socket will connect on the remote host.

address-family
The address family to use. Either IPV} or IPV6.

Chapter 5: Commands 21

connection-type
Which connection type to use. Either TCP or UDP.

If you do not specify the address family and connection type, they will default to IPV/ and
TCP, respectively.

5.22 QUIT

5.23 READ

5.24 SET

5.25 TCOMMIT
5.26 TRESTART
5.27 TROLLBACK
5.28 TSTART

5.29 USE

Sets $I0 to a particular FreeM I/O channel, allowing READs from and WRITEs to the associ-
ated terminal, sequential file, or network socket. Also sets various device parameters.

Syntaz (Terminal)
USE:postcondition io-channell: (right-margin:input-field-length:device-
status-word:position:line-terminator:break-key)]
For terminals, 70-channel must be 0.
Semantic and functional description of each device parameter TBA.
Syntaz (Sequential Files)
USE:postcondition io-channell:seek-position:terminator:nodelay)]
For sequential files, io-channel must be in the range 1-99.
Semantic and functional description of each device parameter TBA.
Syntaz (Network Sockets)
USE:postcondition io-channel
The above syntax will set $I0 to io-channel, directing successive READs and WRITEs to
to-channel, provided the optional postcondition is true or omitted.
USE:postcondition io-channel:/CONNECT

The above syntax will set $I0 to i0-channel, as in the prior example, but will also attempt
to connect to the host and port specified for io-channel when it was OPENed. The /CONNECT
control mnemonic is only valid for socket channels whose connection type is TCP. Using
/CONNECT on a UDP socket channel will throw SCKAERR (error code 55).

For network sockets, io-channel must be in the range 100-255.

Chapter 5: Commands 22

5.30 VIEW

5.31 WRITE

5.32 XECUTE
5.33 ZALLOCATE

5.34 ZASSERT

Triggers error ZASSERT if the supplied truth-valued expression tvexpr is true (1 is true, and
0 is false).

The ZASSERT error is catchable whether using standard-style, FreeM-style, or DSM 2.0-style
error processing.

Syntax
ZASSERT <tvexpr>
Example
USER> ZASSERT 1=1

USER> ZASSERT 1=0

>> Error ZASSERT: programmer assertion failed in SYSTEM::~%ZFREEM [$STACK = O]l
>> ZASSERT 1=0

~

5.35 ZBREAK

5.36 ZDEALLOCATE
5.37 ZGO

5.38 ZHALT

5.39 ZINSERT

5.40 ZJOB

5.41 ZLOAD

5.42 ZNEW

Chapter 5: Commands 23

5.43 ZPRINT
5.44 ZQUIT
5.45 ZREMOVE
5.46 ZSAVE
5.47 ZTRAP

5.48 ZWATCH

Sets a watchpoint on a global, local, or SSV node.
Syntaz

In its argumentless form, ZWATCH toggles watchpoints on and off, provided the optional
postcondition is true or omitted.

ZWATCH:postcondition

In its inclusive form, ZWATCH adds, removes, or examines watchpoints, provided the optional
postcondition is true or omitted.

A + adds a new watchpoint to the following variable.

A - removes an existing watchpoint for the following variable.

A 7 examines the status of a watchpoint for the following variable.
ZWATCH:postcondition [+|-|7]lvarl...,[+|-|?]varN

The following example demonstrates turning watchpoint processing on and adding a watch-
point for global variable ~jpw(1). It then changes the value of ~jpw(1).

USER [LEGACY]> ZWATCH

Watchpoints enabled.

USER [LEGACY]> ZWATCH +~JPW(1)

Added ’~JPW("1")’ to the watchlist.
USER [LEGACY]> SET ~JPW(1)="new value"

>> WATCHPOINT: ~JPW("1") => ’new value’ (changed 1 times)

The following example will remove that watchpoint:
USER [LEGACY]> ZWATCH -"~JPW(1)

Removed ’~JPW("1")’ from the watchlist.

USER [LEGACY]> ZWATCH 7~ JPW(1)

Chapter 5: Commands 24

>~JPW("1")’ is not being watched.

5.49 ZWRITE

Writes the names and values of M variables to $I0.
Syntax
ZWRITE:postcondition

In the argumentless form, writes the names and values of all local variables to $I0 if the
optional postcondition is true or omitted.

ZWRITE:postcondition ArrayName, ...
In the inclusive form, writes the names and values of all local, global, or structured system
variables specified in the list of ArrayNames to $I0 if the optional postcondition is true or
omitted.

ZWRITE:postcondition (ArrayName,...)
In the exclusive form, writes all local variables except those specified in the list of Array-
Names to $10 if the optional postcondition is true or omitted.

Chapter 6: Structured System Variables 25

6 Structured System Variables

SSV subscripts are each described in the following format:

<ssvn-subscript-name> +/-R +/-U +/-D

The R, U, and D flags represent Read, Update, and Delete. A minus sign indicates that
the given operation is not allowed, and a plus sign indicates that the given operation s
allowed.

6.1 "SCHARACTER
The “$CHARACTER SSV is not yet implemented.

6.2 "$DEVICE

FreeM implements several important pieces of functionality in the “$DEVICE SSV.
The first subscript of “$DEVICE represents the I/O channel of an OPENed device.
The following values for the second subscript are supported:

EOF +R -U -D

Returns 1 if the I/O channel has encountered an end-of-file condition; 0 other-
wise. Only valid if the I/O channel is connected to a sequential file.

LENGTH +R -U -D
Returns the length of the file connected to the I/O channel. Only valid if the
I/O channel is connected to a sequential file.

MNEMONICSPACE +R -U -D
Returns the current mnemonic-space in use for the referenced I/O channel.
Always X364 for terminals and blank for sequential files.

DswW +R +U -D
Sets or returns the current Device Status Word controlling terminal character-
istics. Only valid for I/O channel 0.

TERMINATOR +R +U -D
Sets or returns the READ terminator for the specified I/O channel. Must be
either $C(13,10) or $C(10). Currently only supported for socket devices (those
having an I/O channel of 100-255).

Ezample

The following example M code opens /etc/freem.conf and reads its contents line-by-line
until the end of the file is reached.

SET ~$JOB($JOB, "IOPATH")="/etc" ; set I/0 path to /etc
OPEN 1:"freem.conf/r" ; open freem.conf for reading

3

; read until we run out of lines

FOR USE 1 READ LINE USE O QUIT:"$DEVICE(1,"EOF") D
. WRITE LINE,!

Chapter 6: Structured System Variables 26

CLOSE 1
QUIT

6.3 "$SDISPLAY
The “$DISPLAY SSV is not yet implemented.

6.4 "SEVENT
The ~$EVENT SSV is not yet implemented.

6.5 "$GLOBAL
The “$GLOBAL SSV is not yet implemented.

6.6 "$JOB

FreeM fully implements ~$JOB per ANSI X11.1-1995, as well as several extensions proposed
in the M Millennium Draft Standard.

The first subscript of “$J0B represents the $J0B of the process.

If you KILL a first-level subscript of ~$J0B, the SIGTERM signal will be sent to the corre-
sponding UNIX process, causing pending transactions to be rolled back and the process to
be terminated. If the targeted process is in direct mode, the user will be prompted with
options of either rolling back or committing any pending transactions.

The following subscripts are supported:

CHARACTER +R -U -D
Returns the character set of the job.

CcwD +R +U -D
Returns or sets the current working directory of the job.
EVENT +R +U +D
The subtree contained under ~$JOB($J,"EVENT") defines asynchronous event

handlers for the current job. Please see Asynchronous Event Handling for more
information.

GLOBAL +R -U -D
Returns the global environment of the job.

IOPATH +R +U -D
Returns or sets the I/0 path to be used by the OPEN command.

PRIORITY +R +U -D
Returns or sets the nice value of the FreeM job.

ROUTINE +R -U -D
Returns the name of the routine currently being executed by the job.

$PRINCIPAL +R -U -D
Returns the value of $PRINCIPAL for the job.

Chapter 6: Structured System Variables 27

$TLEVEL +R -U -D
Returns the current transaction level (value of $TLEVEL for the job.

$10 +R -U -D
Returns the current value of $I0 for the job.
USER +R -U -D

Returns the UID of the user owning the job.

GROUP +R -U -D
Returns the GID of the group owning the job.

NAMESPACE +R +U -D
Returns or sets the name of the job’s currently-active namespace.

6.7 "$LOCK
The ~“$LOCK SSV is not yet implemented.

6.8 "$PDISPLAY
The ~$PDISPLAY SSV is not yet implemented.

6.9 "$ROUTINE
The “$ROUTINE SSV is not yet implemented.

6.10 "$SYSTEM
The “$SYSTEM SSV is not yet implemented.

6.11 "$WINDOW
The ~$WINDOW SSV is not yet implemented.

6.12 "$ZPROCESS

Provides access to procfs, which is a filesystem-like abstraction for UNIX process metadata
contained in /proc, as well as features for examining and controlling the state of processes
external to the FreeM interpreter.

The first subscript always represents the process ID of the external process being acted
upon.

The following values for the second subscript are supported:

EXISTS +R -U -D
Returns 1 if the referenced process exists; 0 otherwise.

ATTRIBUTES +R -U -D
Exposes the /proc files as descendant subscripts, i.e., WRITE
~$ZPROCESS (2900, "ATTRIBUTES","cmdline"),! would print the
initial command line used to invoke process ID 2900.

Chapter 6: Structured System Variables 28

SIGNAL -R +U -D
Allows signals to be sent to the referenced process. The following subscript is
an integer value corresponding to the desired signal number. You may obtain
a list of signal numbers on most UNIX systems with the command ki1l -1.

Chapter 7: Operators

7 Operators

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

Unary +

Unary -

+ (Add)

+= (Add/Assign)

++ (Postfix Increment)
- (Subtract)

-= (Subtract/Assign)

— (Postfix Decrement)

* (Multiply)

*= (Multiply/Assign)
/ (Divide)
/= (Divide/Assign)

\ (Integer Divide)

\= (Integer Divide/Assign)
(Modulo)

#= (Modulo/Assign)

** (Exponentiate)

**—= (Exponentiate/Assign)

< (Less Than)

29

Chapter 7: Operators

7.20 <= (Less Than or Equal To)
7.21 > (Greater Than)

7.22 >= (Greater Than or Equal To)
7.23 _ (Concatenate)

7.24 _= (Concatenate/Assign)
7.25 = (Equals)

7.26 [(Contains)

7.27] (Follows)

7.28]] (Sorts After)

7.29 7?7 (Pattern Match)

7.30 & (Logical AND)

7.31 ! (Logical OR)

7.32 ’ (Logical NOT)

7.33 @ (Indirect)

30

Chapter 8: Sequential I/0O

8 Sequential 1/0

31

Chapter 9: Network I/O 32

9 Network I/0

Network I/O in FreeM is supplied through I/O channels 100-255. The normal READ and
WRITE syntax will work with network sockets, with a few exceptions.

9.1 Opening and Connecting a Client Socket

To open a client socket and connect to it, you will need to call the OPEN command and the
USE command:

; Set socket read terminator to LF

SET ~“$DEVICE(100,"TERMINATOR")=$C(10)
; Open an IPv4 TCP socket to mail.mydomain.com on port 25 (SMTP)
; and connect to it

OPEN 100:"mail.mydomain.com:25:IPV4:TCP"
USE 100:/CONNECT

3

; Read a line of input from the remote host and write it to the terminall]

NEW LINE
READ LINE
USE O

WRITE LINE,!

I

; CLOSE the socket and disconnect

CLOSE 100
QUIT

Chapter 10: Asynchronous Event Handling 33

10 Asynchronous Event Handling

Asynchronous event handling in FreeM follows the specifications of the unpublished MDC
Millennium Draft Standard.

10.1 Setting Up Async Event Handlers

Asynchronous handlers are configured through the ~$J0B SSV. In order to become proficient
in writing asynchronous event handling code, you need to be aware of several important
concepts:

Event Classes
Event classes denote particular categories of events. These include COMM, HALT,
IPC, INTERRUPT, POWER, TIMER, and USER event classes. At present, only
INTERRUPT events are supported.

Event Identifiers
Event identifiers denote the precise nature of the event that has occurred. For
instance, resizing the terminal window in which a FreeM job is running will
send an event of class INTERRUPT with an event identifier of SIGWINCH (short
for SIGnal WINdow CHange).

Event Handlers
Event handlers are M routines or subroutines that can be registered to run
when an event of a certain event class occurs.

FEvent Registration
Event registration is the process of modifying the ~$J0OB SSV to associate a
particular event class and event identifier with an event handler routine or
subroutine.

FEvent Block
Event blocking is the means by which asynchronous event handling can be tem-
porarily suspended. For example, asynchronous events are temporarily and
implicitly blocked for the duration of event handler execution, unless explic-
itly un-blocked within the event handler. Event handling can also be blocked
and unblocked programatically from M code using the ABLOCK and AUNBLOCK
commands.

The following sections of this chapter will take you step-by-step through setting up an event
handler for SIGWINCH signal handling.

10.2 Registering an Asynchronous Event Handler

To register an event handler, use the following syntax:
SET ~$J0B($J0B,"EVENT",event-class,event-identifier)=entryref

For example, use the following to register "RESIZE as an asynchronous event handler for
SIGWINCH events:

SET ~$JOB($JOB,"EVENT","INTERRUPT","SIGWINCH")=""RESIZE"

This by itself will not enable asynchronous event handling, as it merely registers an event
handler, associating it with event class INTERRUPT and event identifier SIGWINCH.

Chapter 10: Asynchronous Event Handling 34

10.3 Enabling Asynchronous Event Handling

In order to enable asyncronous event handling, the ASTART command is used. In the fol-
lowing example, we will enable asynchronous event handling for the INTERRUPT event class:

ASTART "INTERRUPT"

Omitting the "INTERRUPT" argument will enable asynchronous event handling for all event
classes. See ASTART in the commands section for more details.

Once this is done, any event handlers registered for the INTERRUPT event class in ~$J0B will
be executed asynchronously as appropriate.

10.4 Disabling Asynchronous Event Handling

To disable asynchronous event handling, the ASTOP command is used. In the following
example, we will disable asynchronous event handling for the INTERRUPT event class:

ASTOP "INTERRUPT"

Omitting the "INTERRUPT" argument will disable asynchronous event handling for all event
classes. See ASTOP in the commands section for more details.

You may also disable asynchronous event handling for a specific event identifier by KILLing
the appropriate node in the ~$J0B SSV, which unregisters the event handler altogether.
The following example will unregister the event handler for the SIGWINCH event identifier:

KILL ~$JOB($JOB,"EVENT","INTERRUPT","SIGWINCH")

10.5 Temporarily Blocking Asynchronous Event Handling

To temporarily block processing of specific event classes, you will use the ABLOCK command.
ABLOCK functions incrementally, that is, each successive call to ABLOCK will increment a
counter of blocks held for the specified event class or classes, and each successive call to
AUNBLOCK will decrement that counter. Event handling for the specified event classes will
be blocked as long as the ABLOCK counter for those classes is greater than zero. Thus, event
blocking is cumulative, in a manner similar to M incremental locks.

The following example blocks asynchronous event handling for the INTERRUPT event class:
ABLOCK "INTERRUPT"

Note that entering an event handler causes an implicit ABLOCK of all event classes, to prevent
event handlers from interrupting other event handlers during their execution. This may be
overridden by calling AUNBLOCK for one or more event classes within an event handler.
However, unblocking event handling during an event handler should be done with great
caution, as this can make the flow of code execution somewhat unpredictable, especially if
M globals are modified inside of an event handler routine or subroutine.

Modifying M globals within event handlers is allowed but strongly discouraged, as doing so
can lead to logical corruption of the database. If you must modify an M global within an
event handler, guard all such operations with prodigious and careful use of LOCKs, ensuring
that such modifications occur in the desired logical order.

Chapter 11: Synchronous Event Handling

11 Synchronous Event Handling

35

Chapter 12: GUI Programming with MWAPI

12 GUI Programming with MWAPI

36

Chapter 13: User-Defined Z Commands

13 User-Defined Z Commands

37

Chapter 14: User-Defined Z Functions

14 User-Defined Z Functions

38

Chapter 15: User-Defined SSVs

15 User-Defined SSVs

39

Chapter 16: System Library Routines 40

16 System Library Routines

16.1 “%ZCOLUMNS

This routine is the implementation of the $ZCOLUMNS intrinsic special variable.

16.2 “%ZFREEM

This routine is the default startup routine for FreeM running in direct mode.

Running DO INFO from direct mode will use this routine to display information about the
current FreeM status and namespace configuration.

16.3 “%ZHELP

This routine implements the online help feature of FreeM, invoked by typing ? in direct
mode. It simply asks the underlying system to execute the command info freem.

16.4 ~“%ZROWS

This routine is the implementation of the $ZROWS intrinsic special variable.

Chapter 17: Error Processing 41

17 Error Processing

FreeM exposes three means of processing M program execution errors:

FreeM-style error processing
FreeM-style error processing exposes a read/write error trap in $ZTRAP. The
contents of $ZTRAP must be either empty or a valid M entryref, to which FreeM
will GOTO if an error occurs. Each program stack execution level can have its
own $ZTRAP error handler enabled.

DSM 2.0-style error processing
DSM 2.0-style error processing emulates the $ZTRAP behavior of Digital Stan-
dard MUMPS v2. It has the same behavior as FreeM-style error handling, with
the exception that in DSM 2.0-style error processing, only one $ZTRAP error
handler is set across all program stack execution levels.

Standard error processing
Standard error processing uses the NEW-able $ETRAP variable to store error han-
dler code, which may be any valid M code. The code in $ETRAP will run when
an error occurs or the $ECODE ISV becomes non-empty. Stack information for
standard error handling is provided by the $STACK ISV, the $STACK() intrinsic
pseudo-function, and the NEW-able $ESTACK ISV.

If $ETRAP is non-empty when an error condition occurs, $ZTRAP is ignored,
regardless of whether FreeM-style or DSM 2.0-style error processing is enabled
at the time of the error.

For further information on switching between FreeM-style and DSM 2.0-style $ZTRAP error
handling, see the documentation for the BREAK command.

Chapter 18: Debugging

18 Debugging

42

Chapter 19: System Configuration 43

19 System Configuration

19.1 Installing FreeM

19.2 Namespaces Overview

Configuration and administration of FreeM and the applications it hosts centers around
the concept of namespaces, which represent a collection of M routines and globals existing
within a well-defined directory hierarchy.

Beneath the FreeM installation directory (typically /var/local/freem) exists a number of
subdirectories, each corresponding to a single FreeM namespace.

In the example below, two namespaces have been defined, named SYSTEM and USER. This is
a fairly typical configuration, and routines and globals whose names begin with the % charac-
ter, which are generally considered to be code and data to be shared among all namespaces
in a FreeM system, are typically stored in the SYSTEM namespace, while each individual
application or related set of applications will be managed beneath another namespace, such
as the USER namespace presented below:

$freem_base

+- SYSTEM

+- routines
+- %ZFREEM.m
+- %ZCOLUMNS .m
+- %ZFRMXEC.m

I
[

[

[

| | +- %ZFRMSAMP.m
[

[

I

I

+- %ZROWS.m
+- %ZHELP.m
+- globals
+- "%SYS
+- USER
+- routines
| +- MYAPP.m
+- globals

+- "MYGLOBAL

19.3 Listing Namespaces
To list all namespaces defined in ‘freem.conf’, type the following command:

$ namespace list
Namespaces Defined in /etc/freem.conf:

SYSTEM
USER

In this example, the SYSTEM and USER namespaces are the only ones defined.

Chapter 19: System Configuration 44

19.4 Adding Namespaces

When adding new applications to your FreeM installation, it is important to plan an appro-
priate namespace configuration. In general, it is advisable to place each application in its
own namespace, as this will prevent conflicts in routine and global names, which can easily
lead to data corruption. However, there are cases where it is preferable (or even essential)
to combine multiple applications into a single namespace, i.e., when two applications rely
on the ability to access each other’s routines and/or globals, both applications must reside
in a shared namespace.

In order to add a namespace to FreeM, you use the namespace add command. In the
following example, we will add a new namespace called MVTS, for installing the M Validation
and Test Suite:

$ namespace add MVTS
Adding namespace MVTS...

Namespace MVTS has been created.
Access it with the following command:

$ freem --namespace=MVTS
Or if FreeM is already running:

SYSTEM> SET ~$JOB($J0OB, "NAMESPACE")="MVTS"

The namespace utility supports customization of a great many namespace options, including
configuration of journaling and lock table location, among others.

For more information on the namespace utility, please consult the relevant section of the
manual in Appendix A (FreeM Legacy Utilities).

19.5 Removing Namespaces

Not yet implemented.

19.6 Importing Routines

FreeM fully supports the %R0/%RI distribution format for the transport of collections of
application routines. The ri utility, located in $freem_base/sbin/ri, will allow you to
import such a file directly into a defined namespace with minimal effort.

In this example, we will create a VPE namespace and import the Victory Programming
Environment into it:

$ namespace add VPE
Adding namespace VPE...

Namespace VPE has been created.
Access it with the following command:

Chapter 19: System Configuration 45

$ freem --namespace=VPE
Or if FreeM is already running:
SYSTEM> SET ~$JOB($JOB, "NAMESPACE")="VPE"

$ ri --namespace=VPE --file=VPE15P2.RSA

FreeM Routine Import from ’VPE15P2.RSA’

* Using FreeM namespace VPE
* Percent routines will be loaded into /home/jpw/.freem/SYSTEM/routines]]
* User routines will be loaded into /home/jpw/.freem/VPE/routines

Routines

Routines:

XVEMBLDA
XVEMBLDB
XVEMBLDL
XVEMBLD
XVEMD1
XVEMDC
XVEMSYN

...lines omitted...

XVVMIOOS
XVVMINI1
XVVMINIZ2
XVVMINI3
XVVMINI4
XVVMINI5
XVVMINIS
XVVMINIT
XVVMVPE

Loaded 246 user routines and O percent routines (246 total).

Chapter 20: Accessing FreeM from C Programs 46

20 Accessing FreeM from C Programs

FreeM provides a library, ‘libfreem.so’, as well as corresponding header file ‘freem.h’,
allowing C programmers to write programs that access FreeM globals, locals, structured
system variables, subroutines, and extrinsic functions. This functionality can be used to
implement language bindings and database drivers for external systems.

In order to be used in your C programs, your C programs must link with ‘libfreem.so’
and include ‘freem.h’. This will allow your C code access to the function prototypes, data
structures, and constants required for calling the ‘libfreem.so’ APlIs.

You must exercise caution in developing programs that interface with FreeM through
‘libfreem.so’ to ensure that all ‘libfreem.so’ API calls are serialized, as FreeM and
the ‘libfreem.so’ library are neither thread-safe nor reentrant.

You must also avoid setting signal handlers for SIGALRM, as FreeM uses SIGALRM to manage
timeouts for LOCK, READ, and WRITE.

20.1 freem_ref_t Data Structure

The libfreem API uses a struct of type freem_ref_t in order to communicate state, pass
in values, and return results.

The data structure, defined in ‘freem.h’, looks like this:

typedef struct freem_ref_t {

/*
The ’reftype’ field can be one of:

*
*

* MREF_RT_LOCAL
* MREF_RT_GLOBAL
* MREF_RT_SSV

*/

short reftype;

/%

* The ’name’ field is the name of the local variable,
* global variable, or SSV (without ~ or ~$).

*/

char name[256] ;

/*

* Returned data goes in a string, so you’ve got to figure out the
* whole M canonical number thing yourself. Good luck. :-)

*/

char value[STRLEN];
short status;

unsigned int subscript_count;

Chapter 20: Accessing FreeM from C Programs 47

char subscripts[255] [256];

} freem_ref_t;

freem_ref_t Members

‘reftype’ The ‘reftype’ member determines whether we are operating on a local variable,
a global variable, or a structured system variable. It may be set to any of
following constants: MREF_RT_LOCAL, MREF_RT_GLOBAL, or MREF_RT_SSV.

‘name’ The ‘name’ member contains the name of the global, local, or SSV to be accessed.
You must not include leading characters, such as ~ or ~$.

‘value’ This member contains the value read from or the value to be written to the
global, local, or SSV.

‘status’ This member gives us various API status values after the API call returns. In
general, this value is also returned by each API function.

‘subscript_count’
The number of subscripts to be passed into the API function being called. This
value represents the maximum index into the first dimension of the subscripts
array.

‘subscripts’
A two-dimensional array containing the subscripts to which we are referring in
this APT call.

20.2 freem_ent_t Data Structure

The freem_function() and freem_procedure() APIs in libfreem use the freem_ent_t
struct in order to indicate the name of the entry point being called, any arguments being
passed to it, and the return value of the called function (not used for freem_procedure()).

The data structure, defined in ‘freem.h’, looks like this:
typedef struct freem_ent_t {

/* name of function or procedure entry point */
char name[256];

/* return value */
char value[STRLEN] ;

/* value of ierr on return */
short status;

/* argument count and array */
unsigned int argument_count;
char arguments[255] [256];

} freem_ent_t;

freem_ent_t Members

Chapter 20: Accessing FreeM from C Programs 48

‘name’ The ‘name’ member contains the name of the extrinsic function or procedure to
be called.
‘value’ This member contains the value returned by the function called. Not used by

freem_procedure().

‘status’ This member gives us the value of ierr after the function or procedure call
returns. The possible values of ierr are listed in merr.h.

‘argument_count’
The number of arguments to be passed into the extrinsic function or procedure
being called. This value represents the maximum index into the first dimension
of the arguments array.

‘arguments’
A two-dimensional array containing the arguments to be passed into the ex-
trinsic function or procedure being called.

20.3 freem_init()

Initializes 1ibfreem in preparation for calling other APIs.
Synopsis
pid_t freem_init (char *namespace_name) ;
Parameters
namespace_name
Specifies the namespace to use.
Return Values
Returns the process ID of the 1ibfreem process on success, or -1 on failure.
Ezample

This example prompts the user to enter a FreeM namespace and then attempts to initialize
libfreem to use the selected namespace.

#include <stdio.h>

#include <string.h>

#include <freem.h>

int main(int argc, char **argv, char **envp)
{

char namespace[256] ;
/* get the namespace name to use */
printf ("Enter FreeM namespace to use: ");

fgets(namespace, 255, stdin);

/* remove the trailing newline */
namespace [strcspn(buffer, "\n")] = ’\0’;

/* initialize libfreem using the provided namespace */

Chapter 20: Accessing FreeM from C Programs 49

if (freem_init(namespace) == TRUE) {
printf ("\nSuccess\n");

}
else {

printf ("\nFailure\n");
+

return O;

by

20.4 freem_version()

Returns the version of FreeM in use.

Synopsis

short freem_version(char *result);

Parameters

result The result parameter is a pointer to a buffer in which the FreeM version
information will be returned. The caller must allocate memory for this buffer
prior to calling this API. It should be at least 20 bytes in length.

Return Value

Returns 0.

Ezample

This example will display the FreeM version on standard output.

#include <stdio.h>
#include <string.h>
#include <freem.h>

int main(int argc, char **argv, char **envp)

' char version[20] = {0};
freem_init (¢ ‘USER’’);
freem_version(version) ;
printf (¢ ‘FreeM version: %s\n’’, version);

}

20.5 freem_set()

Sets a FreeM local node, global node, or writable SSV node.
Synopsis
short freem_set(freem_ref_t *ref);

Parameters

Chapter 20: Accessing FreeM from C Programs 50

freem_ref_t
This parameter is a pointer to a freem_ref _t struct. The caller must allocate
the memory for this struct.

Return Value

Returns OK on success, or one of the other error values defined in merr.h.

Example

This example sets the value blue into global node “car("color").

#include <stdio.h>
#include <string.h>
#include <freem.h>

int main(int argc, char **argv, char **envp)
{

freem_ref_t ref;

/* we’re setting a global */
ref . reftype = MREF_RT_GLOBAL;

/* access global "car" */
strcpy(ref .name, "car");

/* set up the subscripts */
ref.subscript_count = 1;
strcpy(ref.subscripts[0], "color");

/* use the USER namespace */
freem_init ("USER");

/* write the data out */
freem_set (&ref);

}

20.6 freem_get()

Retrieves a FreeM local node, global node, or writable SSV node.
Synopsis

short freem_get (freem_ref_t *ref);

Parameters

freem_ref_t

This parameter is a pointer to a freem_ref_t struct. The caller must allocate
the memory for this struct.

Return Value

Chapter 20: Accessing FreeM from C Programs 51

Returns OK on success, or one of the other error values defined in merr.h.
Example
This example retrieves the character set of the current process.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <freem.h>

int main(int argc, char **xargv, char)
{

pid_t pid;

freem_ref_t ref;

/* get the PID of this process */
pid = getpid();

/* we want to access an SSV */
ref.reftype = MREF_RT_SSV;

/* set up the name and subscripts */
strcpy(ref .name, "JOB");

ref.subscript_count = 2;
sprintf (ref.subscripts[0], "%d", pid);
strcpy(ref.subscripts[1], "CHARACTER");

/* initialize libfreem, using the USER namespace */
freem_init ("USER");

/* call libfreem API */
freem_get (&ref) ;

/* output the character set info */
printf ("PID %d character set is ’%s’\n", pid, ref.value);

20.7 freem_kill()

Deletes a FreeM local node, global node, or killable SSV node, as well as all of its children.
short freem_kill(freem_ref_t *ref);

Parameters

freem_ref_t

This parameter is a pointer to a freem_ref _t struct. The caller must allocate
the memory for this struct.

Chapter 20: Accessing FreeM from C Programs

Return Value
Returns OK on success, or one of the other error values defined in merr.h.
Example

#include <stdio.h>

#include <string.h>

#include <freem.h>

int main(int argc, char **argv, char **envp)
{

freem_ref_t ref;

/* we’re killing a global node */
ref.reftype = MREF_RT_GLOBAL;

/* access global "car" */
strcpy(ref.name, "car");

/* set up the subscripts */
ref.subscript_count = O;

/* use the USER namespace */
freem_init ("USER");

/* kill the global and all its descendant subscripts */
freem_kill (&ref);

20.8 freem_data()
20.9 freem_order()
20.10 freem_query()
20.11 freem_lock()
20.12 freem_unlock()
20.13 freem_tstart()
20.14 freem_trestart()

20.15 freem_trollback()

Chapter 20: Accessing FreeM from C Programs

20.16 freem_tlevel()
20.17 freem_tcommit()
20.18 freem_function()

20.19 freem_procedure()

93

Appendix A: FreeM Administrator 54

Appendix A FreeM Administrator

The fmadm utility is the preferred method of managing a FreeM installation, and will eventu-
ally replace all of the existing utilities. Unlike the existing, legacy utilities, fmadm presents
a consistent, simple interface for all FreeM management tasks, and is namespace-aware.
This appendix will document each fmadm facility as it is implemented, until all of the legacy
utilities have been replaced.

The fmadm utility’s functions all follow the below, consistent syntax:
usage: fmadm <action> <object> <namespace> [OPTIONS]

The action keyword can be one of the following:
list Lists instances of object

examine Examines a single instance of object
verify Verifies the integrity of object

compact Compacts object

repair Repairs integrity problems in object
create Creates an instance of object
remove Removes an instance of object
import Imports an object

export Exports an object

backup Creates a backup of object

restore Restores a backup of object
migrate Migrates an instance of object from an older FreeM version to the current version
edit Edits an instance of object

The object keyword can be one of the following:

lock The FreeM LOCK table. Supported actions are 1ist and remove.

zallocate The FreeM ZALLOCATE table. No actions yet implemented.

Journal FreeM database journaling [EXPERIMENTAL]. No actions yet implemented.

namespace
FreeM namespaces (collections of M routines and globals). No actions yet
implemented.

global The database files representing each FreeM global. Supported actions are 1ist,
examine, and remove.

routine An M routine, stored as a .m file. Supported actions are 1ist, examine, remove,
import, export, backup, and edit.

job A UNIX process representing an instance of the FreeM runtime. Supported

actions are 1ist and examine.

Appendix B: FreeM Legacy Utilities 55

Appendix B FreeM Legacy Utilities

B.1 Global Compactor (gcompact)

Compacts the specified global in place.
Syntax
gcompact /path/to/global/file

B.2 Block Examiner (gfix)

The gfiz interactive utility program permits navigation of the B-tree structure of the spec-
ified global a block at a time.

Syntax
gfix </path/to/global/file>

B.3 Global Lister (gl)

This utility lists the contents of the specified global in various formats to standard output.

Syntax
gl [OPTIONS] </path/to/global/file>
-k’ Show global keys alone on a separate line.
‘=d’ Show global data alone on a separate line.
‘-n’ Show global keys and data, each on a separate line, with the keys in naked

indicator form relative to the previous key.

If none of these options are supplied, the output has each node’s key and data on the same
line separated by an = sign. The ‘-k’ and ‘-d’ switches may be combined as ‘-kd’ in order
to output keys and data on alternating lines.

B.4 Lock Examiner (glocks)

This utility lists the contents of the lock table to standard output.
Syntax

glocks [OPTIONS...] [</path/to/global/file>]
Options

‘-pid <process-id>’
Causes all locks owned by <process-id> to be cleared from the lock table.

B.5 Global Repair Tool (grestore)

This utility will fix problems with the specified global.
Syntaz
grestore </path/to/global/file>

Appendix B: FreeM Legacy Utilities 56

B.6 Global Validator (gverify)

This utility checks the specified global file for database corruption and inconsistencies.
Syntax

gverify <path/to/global/file>

B.7 Namespace Manager (namespace)

Adds, removes, lists, or displays the configuration of FreeM namespaces, allowing the user
to specify all relevant configuration options.

Syntax
namespace [add | remove | show] [-n <namespace> | --namespace=<namespace>]|]
[OPTIONS...]
namespace list
Options
4_h7’ L__help7
Displays a summary of namespace syntax and command-line options.
‘-n <namespace>’, ‘-—namespace=<namespace>’
Sets the namespace being acted upon.
‘-m [inactive | read | writel’, ‘--jnlmode=[inactive | read | write]’
Sets the journaling mode for the namespace; ‘inactive’ by default.
‘~f <journal-file>’ ‘-—jnlfile=<journal-file>’
Sets the file that FreeM will use for journaling; ‘/tmp/freem. journal’ by de-
fault.

‘-1 <locktab-file>’, ‘--locktab=<locktab-file>’
Sets the file that FreeM will use for maintaining the LOCK table;
‘/tmp/freem.locktab’ by default.

‘-z <zalloctab-file>’, ‘--zalloctab=<zalloctab-file>’
Sets the file that FreeM will use for maintaining the ZALLOCATE table;
‘/tmp/freem.zalloctab’ by default.

‘-c <hardcopy-file>’, ‘--~hardcopy=<hardcopy-file>’
Sets the file FreeM will use when invoked in hardcopy mode;
‘/tmp/freem.hardcopy’ by default.

‘~p <freem-path>’, ‘--path=<freem-path>’
Informs this program of the location where FreeM is installed. You must upply
the ‘-p’ or ‘--path’ option if the $freem_base environment variable is not set.

B.8 Routine Import (ri)
Allows the user to import routines in the %R0/%RI distribution format into a FreeM names-
pace.
Syntax

ri --file=<archive-file> --namespace=<namespace-name> [--overwrite]
Options

Appendix B: FreeM Legacy Utilities 57

‘~—file=<archive-file>’
Specifies the %R0/%RI-format file whose routines you wish to import.

‘--namespace=<namespace-name>’
Specifies the FreeM namespace into which routines from <archive-file> will be
loaded.

‘~—overwrite’
Indicates that ri should overwrite any routines from <archive-file> that already
exist in <namespace-name>. Use with a preponderance of caution.

Appendix C: FreeM VIEW Commands and Functions 58

Appendix C FreeM VIEW Commands and
Functions

C.1 VIEW 16: Total Count of Error Messages/View Single
Error Message

Unknown semantics

C.2 VIEW 17: Intrinsic Z-Commands

Allows the user to retrieve or specify the list of intrinsic Z-commands that FreeM will
attempt to run internally, allowing intrinsic Z-commands implemented internally to be
replaced with M equivalents implemented as %-routines in the SYSTEM namespace.

C.3 VIEW 18: Intrinsic Z-Functions

Allows the user to retrieve or specify the list of intrinsic Z-functions that FreeM will attempt
to run internally, allowing intrinsic Z-functions implemented internally to be replaced with
M equivalents implemented as %-routines in the SYSTEM namespace.

C.4 VIEW 19: Intrinsic Special Variables

Allows the user to retrieve or specify which special variables are implemented internally.

C.5 VIEW 20: Break Service Code

Allows the user to view or specify the code that will be run when a BREAK is encountered.

C.6 VIEW 21: View Size of Last Global

Allows the user to view the size of the last referenced global.

C.7 VIEW 22: Count VIEW 22 Aliases
Retrieves the number of VIEW 22 aliases in effect.

C.8 VIEW 23: View Contents of Input Buffer
Retrieves the contents of the I/O input buffer.

C.9 VIEW 24: Maximum Number of Screen Rows

Retrieves the maximum number of screen rows supported in the current FreeM build.

C.10 VIEW 25: Maximum Number of Screen Columns

Retrieves the maximum number of screen columns supported in the current FreeM build.

C.11 VIEW 26: DO/FOR/XECUTE Stack Pointer
Retrieves the DO, FOR, and XECUTE stack pointer.

Appendix C: FreeM VIEW Commands and Functions

C.12 VIEW 27: DO/FOR/XECUTE Stack Pointer (On
Error)

Retrieves the DO, FOR, and XECUTE stack pointer (on error).

C.13 VIEW 28: Switch Symbol Table

Switches the symbol table? We aren’t currently aware of what this means.

C.14 VIEW 29: Copy Symbol Table

Copies the symbol table? We aren’t currently aware of what this means.

C.15 VIEW 30: Inspect Arguments

Retrieves the arguments passed to the freem executable.

C.16 VIEW 31: Count Environment Variables

Allows the user to inspect the number of variables in the process environment table.
Syntax
WRITE $VIEW(31),!

99

Appendix D: Implementation Limits

Appendix D Implementation Limits

60

Appendix E: US-ASCII Character Set

Appendix E US-ASCII Character Set

Code Character

000 <NUL>
001 <S0H>
002 <STX>
003 <ETX>
004 <EOT>
005 <ENQ>
006 <ACK>
007 <BEL>
008 <BS>
009 <HT>
010 <LF>
011 <VT>
012 <FF>
013 <CR>
014 <80>
015 <SI>
016 <DLE>
017 <DC1>
018 <DC2>
019 <DC3>
020 <DC4>
021 <NAK>
022 <SYN>
023 <ETB>
024 <CAN>
025
026 <SUB>
027 <ESC>
028 <FS>
029 <GS>
030 <RS>
031 <UsS>
032 <space>
033 !

034 «

035 #

Appendix F: FreeM Project Coding Standards 62

Appendix F FreeM Project Coding Standards

F.1 Module Headers

Module headers should adhere to the following format:
/*
*
x %
x %
stk Kok ok Kok KoK ok Kok oK oK
* % * %
* MUMPS
* ok x %
Kok Kok ok Kok KoK ok Kok KoK o
x
* X
*

mlib.h
Function prototypes, structs, and macros for FreeM
binding library

Author: John P. Willis <jpw@coherent-logic.com>
Copyright (C) 1998 MUG Deutschland
Copyright (C) 2020 Coherent Logic Development LLC

Last modified: 29 February 2020

¥ X X X X X X X X K K X X X X X X X X X X ¥ *

*% /

The Star of David in module headers is a convention started by Shalom ha-Ashkenaz, the
unidentified original author of FreeMUMPS /FreeM. We will continue to employ it in honor
of his most valuable contribution to the M community.

F.2 Variable Naming

Variables should be named in all lowercase letters, and words within them delimited by
underscores, such as my_useful_variable. PascalCase and camelCase are not to be used
in this codebase under any circumstances.

Constants defined via the C preprocessor should be in all uppercase letters, with words
within them likewise delimited by underscores, such as:

#define MY_USEFUL_CONSTANT 1

F.3 Indentation and General Layout

This project uses four spaces for indentation. Tabs are not to be used under any circum-
stances, and all source files must use a linefeed character to delineate lines. If you are

Appendix F: FreeM Project Coding Standards 63

working on a Windows machine, you must take care to follow this, as Windows will use a
carriage return followed by a linefeed by default.

This project follows a modified version of what is known as the Stroustrup indentation style.

F.4 Brace Placement (Functions)

We use modern, ANSI-style function prototypes, with the type specifier on the same line
as the function name. You may encounter other styles in the code, but we are transitioning
to the new style as time permits.

Below is a correct example:

int main(int argc, char **xargv, char **xenvp)

{
}
F.5 Brace Placement (if-for-while-do)

The if keyword should be followed by one space, then the opening paren and conditional
expression. We also use Stroustrup-style else blocks, rather than the K&R ’cuddled’ else:

if (x) {

}
else {

i..
while (1) {

i'.

for (i = 1; 1 < 10; i++) {

¥

do {
i.%hile (x);

Single-statement if blocks should be isolated to a single line:
if (x) stmt();
not:
if (x)
stmt () ;
Notice that there is a space between if and (x), but not between stmt and (). This should
be followed throughout the code.

If an if block has an else if or else, all parts of the construct must be bracketed, even
if one or more of them contain only one statement:

Appendix F: FreeM Project Coding Standards

if (x) {
foo();

}

else if (y) {
bar();

}

else {
bas();

}

F.6 Labels and goto

64

Labels must begin in column 1, and have two lines of vertical space above and one beneath.

F.7 Preprocessor Conditionals

F.8 coding standards, preprocessor conditionals

I have struggled with this, but have settled upon the standard practice of keeping them in

column 1.

F.9 Overall Program Spacing

e Variable declarations fall immediately beneath the opening curly brace, and should

initialize the variable right there whenever initialization is used.

e One line between the last variable declaration and the first line of real code.

e The return statement of a function (when used as the last line of a function) should

have one blank line above it and none below it.

e Really long functions (those whose entire body is longer than 24 lines) should have
a comment immediately following the closing curly brace of the function, telling you

what function the closing brace terminates.

F.10 The switch() Statement

We indent case one level beneath switch(), and the code within each case beneath the

case. Each case should have one line of vertical whitespace above it:

switch(foo) {

case some_const :
foo();

break;

case some_other_const:
bar();

break;

Appendix F: FreeM Project Coding Standards 65

default:
exit(1);

break;

}

F.11 Comments

We use C-style comments (/* comment */) exclusively, even on single-line comments. C++
comments (// comment) are not permitted.

Appendix G: Conformance Clause

Appendix G Conformance Clause

66

Index

Index

$

SASCII. .ot 12
SCHAR . oo i 12
D AT A . . 12
SDEVICE ..o i 8
SECODE . ..ot 8
SESTACK ..o 8
SETRAP ..o 8
SEXTRACT . .o, 12
SEFIND ..o e 12
SENUMBERot 12
SGE T .o 12
SHOROLOG . oo i 8
SIO .o 8
STOB . . 8
STJUSTIEY .o 12
SKEY oo 8
SLENGTH ... 12
SNAME . .o 12
SNEX T .o 12
SORDERt 12
SPIECE 13
SPRINCIPAL ..ot e, 8
SQLENGTH ... 13
$QSUBSCRIPT ... 13
SQUERY ...t 13
SQUIT ... 8
SRANDOM ..., 13
SREVERSE . ..o 13
SSELECT ..ot e 13
SSTACK ..o 9,13
SSTORAGE . ..o 9
SSY STEM ...t 9
STES T .., 9
ST EX T .ot 13
STLEVEL 9
STRANSLATE ... 13
STRESTART . ..ot 9
SVIEW . o 13
B 9
BY 9
SZA 9
S B 10
SZBOOLEAN ... 14
SZCALL ..ot 14
$ZCONTROLC ..o, 10
SZCR . oo 14
SZCRC . .ot 14
SZDATE . ..\ttt 10, 14
SZE DI . . 14
SZERROR ..o 10
S 10
$ZHOROLOG ...\t 10, 14

SZHT .o 15

67
SZINRPT ..ot 10
SZIOB .. 10
SZKEY ..ot 15
SZLENGTH ...\t 15
SZLOCALttt 10
SZLSD .. 15
SZM 15
$ZMATCHALPHABETICc.ovveeen... 10
$ZMATCHCONTROLt 10
$ZMATCHEVERYTHINGcoven.. 11
$ZMATCHLOWERCASE ..o 10
$ZMATCHNUMERICt 10
$ZMATCHPUNCTUATIONc.oven... 10
$ZMATCHUPPERCASEot 11
SZNAMEttt 15
SZNEXT ...t 15
SZORDER . ..ot 15
SZPIECE. ...ttt 15
$SZPRECISIONttt 11
SZPREVIOUS. ...ttt 15
$ZREFERENCEoovii i 11
SZREPLACEottt 15
SZSORT ...t 15
SZSYNTAX ..ot 15
SZSYSTEM ...ttt 11
SZTIME ...t 11, 15
SZTRAP ... oo 11
SZVERSION ...t 11
SZZIP ..o 15
“$CHARACTER ...\ 25
“$DEVICEttt 25
“$DISPLAY ...t 26
SSEVENT ..ottt 2
“$GLOBAL ..t 26
“STOB . 26
SSLOCK vt 27
“$PDISPLAY ...t 27
“$SROUTINE ...\t 27
“$SYSTEM ..ot 27
“SSWINDOW ...t 27
“$ZPROCESS . .+ttt 27
~%ZCOLUMNS ...t 40
“BZFREEM ... 40
SBZHELP ... 40
SBZROWS . .ot 40
A
ABLOCK ...\ttt 16
ASTART ..o 16
ASTOP oo 16
AUNBLOCK . ..ot 17

Index

CLOSE . 18
coding standards, brace placement, functions... 63
coding standards, brace placement, if-for-while-do

... 63
coding standards, comments 65
coding standards, goto........... ... 64
coding standards, indentation.................. 62
coding standards, labels 64
coding standards, layout....................... 62
coding standards, module headers.............. 62
coding standards, spacing of programs......... 64
coding standards, switch() 64
coding standards, variable naming 62
command line interface 5
COMMANAS . . oo vttt e 16
commands, ABLOCK 16
commands, ASTART 16
commands, ASTOP 16
commands, AUNBLOCK 17
commands, BREAK 17
commands, CLOSE..........., 18
commands, debugging...................... 22, 23
commands, DO.................. .. 18
commands, ELSE.............................. 18
commands, FOR 18
commands, GOTO 18
commands, HALT 18
commands, HANG 18
commands, IF 18
commands, implementation-specific. 22,23, 24
commands, JOB........ i 18
commands, KILL...............o. .o o 18
commands, KSUBSCRIPTS 18
commands, KVALUE.......................... 19
commands, LOCK........................ ..., 19
commands, MERGE........................... 19
commands, NEW....................oo 19
commands, OPEN............ 20
commands, QUIT 21
commands, READ.......... 21
commands, SET 21
commands, TCOMMIT........................ 21
commands, TRESTART 21
commands, TROLLBACK 21
commands, TSTART, 21
commands, unimplemented 21
commands, USE............ 21
commands, VIEW 22
commands, WRITE 22
commands, XECUTE.......................... 22
commands, ZALLOCATE 22
commands, ZASSERT 22

commands, ZBREAK.......................... 22

68
commands, ZDEALLOCATE 22
commands, ZGO o i 22
commands, ZHALT 22
commands, ZINSERT.......................... 22
commands, ZJOBo 22
commands, ZLOAD 22
commands, ZNEWl 22
commands, ZPRINT................ 23
commands, ZQUIT 23
commands, ZREMOVE........................ 23
commands, ZSAVE 23
commands, ZTRAP 23
commands, ZWATCH 23
commands, ZWRITE 24
configuration, system 43
contributors, Best, John, 1
contributors, Diamond, Jon..................... 1
contributors, Fox, Ronald L. 1
contributors, Gerum, Winfried 1
contributors, ha-Ashkenaz, Shalom.............. 1
contributors, Kreis, Greg........................ 1
contributors, Landis, Larry 1
contributors, Marshall, Frederick D.S............ 1
contributors, Milligan, Lloyd 1
contributors, Morris, Steve...................... 1
contributors, Murray, John...................... 1
contributors, Pastoors, Wilhelm................. 1
contributors, Schell, Kate....................... 1
contributors, Schofield, Lyle..................... 1
contributors, Stefanik, Jim............... 1
contributors, Trocha, Axel 1
contributors, Walters, Dick 1
contributors, Whitten, David 1
contributors, Wicksell, David 1
contributors, Willis, John P. 1
contributors, Zeck, Steve.......... 1
D
debugging ... 42
direct mode ... 5
DO 18
E
ELSE . o 18
€ITOr ProCesSiNgoviviiiiiiiiinn ... 41
event handlers, blocking 34
event handlers, disabling....................... 34
event handlers, enabling 34
event handlers, registration 33
event handling, asynchronous.................. 33
execution, interactive............. 5
F
fmadm ... 54
FOR ..o 18

Index

ha-Ashkenaz, Shalom 62
HALT . 18
HALT, in direct-mode 6
HANG . 18

TE 18
import, %RO format 44
installation, FreeM 43
intrinsic functions, $ASCII..................... 12
intrinsic functions, SCHAR 12
intrinsic functions, $DATA..................... 12
intrinsic functions, SEXTRACT................ 12
intrinsic functions, $FIND 12
intrinsic functions, SFNUMBER................ 12
intrinsic functions, $GET 12
intrinsic functions, $JUSTIFY 12
intrinsic functions, SLENGTH 12
intrinsic functions, SNAME 12
intrinsic functions, SNEXT 12
intrinsic functions, §ORDER.................... 12
intrinsic functions, $PIECE.................... 13
intrinsic functions, SQLENGTH 13
intrinsic functions, $§QSUBSCRIPT 13
intrinsic functions, SQUERY 13
intrinsic functions, SRANDOM 13
intrinsic functions, SREVERSE 13
intrinsic functions, $SELECT 13
intrinsic functions, $STACK 13
intrinsic functions, $TEXT 13
intrinsic functions, $TRANSLATE 13
intrinsic functions, SVIEW..................... 13
intrinsic functions, $ZBOOLEAN 14
intrinsic functions, $ZCALL 14
intrinsic functions, $ZCR 14
intrinsic functions, $ZCRC..................... 14
intrinsic functions, $ZDATE 14
intrinsic functions, $ZEDIT.................... 14
intrinsic functions, $ZHOROLOG.............. 14
intrinsic functions, $ZHT 15
intrinsic functions, $ZKEY..................... 15
intrinsic functions, $ZLENGTH................ 15
intrinsic functions, $ZLSD 15
intrinsic functions, $ZM 15
intrinsic functions, $ZNAME................... 15
intrinsic functions, $ZNEXT 15
intrinsic functions, $ZORDER.................. 15
intrinsic functions, $ZPIECE 15
intrinsic functions, $ZPREVIOUS.............. 15
intrinsic functions, $ZREPLACE............... 15
intrinsic functions, $ZSORT 15

intrinsic functions, $ZSYNTAX 15

69
intrinsic functions, $ZTIME 15
intrinsic functions, $ZZIP...................... 15
intrinsic functions, implementation-specific 14,
15
intrinsic special variables, SDEVICE 8
intrinsic special variables, SECODE............. 8
intrinsic special variables, SESTACK 8
intrinsic special variables, SETRAP 8
intrinsic special variables, SHOROLOG 8
intrinsic special variables, $10 8
intrinsic special variables, $JOB................. 8
intrinsic special variables, $KEY 8
intrinsic special variables, $PRINCIPAL......... 8
intrinsic special variables, $QUIT 8
intrinsic special variables, $STACK 9
intrinsic special variables, $STORAGE 9
intrinsic special variables, $SYSTEM............ 9
intrinsic special variables, $TEST 9
intrinsic special variables, STLEVEL............ 9
intrinsic special variables, STRESTART 9
intrinsic special variables, $X 9
intrinsic special variables, $Y 9
intrinsic special variables, $ZA 9
intrinsic special variables, $ZB................. 10
intrinsic special variables, $ZCONTROLC 10
intrinsic special variables, $ZDATE 10
intrinsic special variables, $ZERROR 10
intrinsic special variables, $ZF 10
intrinsic special variables, $ZHOROLOG....... 10
intrinsic special variables, $ZINRPT 10
intrinsic special variables, $ZJOB.............. 10
intrinsic special variables, $ZLOCAL........... 10
intrinsic special variables,
$ZMATCHALPHABETIC 10
intrinsic special variables, $ZMATCHCONTROL
... 10
intrinsic special variables,
$ZMATCHEVERYTHING 11
intrinsic special variables,
$ZMATCHLOWERCASE 10
intrinsic special variables, $ZMATCHNUMERIC
... 10
intrinsic special variables,
$ZMATCHPUNCTUATION 10
intrinsic special variables,
$ZMATCHUPPERCASE.................. 11
intrinsic special variables, $ZPRECISION....... 11
intrinsic special variables, $ZREFERENCE 11
intrinsic special variables, $ZSYSTEM 11
intrinsic special variables, $ZTIME............. 11
intrinsic special variables, $ZTRAP 11
intrinsic special variables, $ZVERSION 11
intrinsic special variables, implementation-specific
.................................... 9, 10, 11
intrinsic special variables, unimplemented 9
invocation, command-line.................... ... 3

Index

KILL. ..o 18
KSUBSCRIPTS ... 18
KVALUE. ... 19

L

libfreem, data structures: freem_ent_t.......... 47
libfreem, data structures: freem_ref_t........... 46
libfreem, freem_data() 52
libfreem, freem_ent_t.argument_count.......... 48
libfreem, freem_ent_t.arguments................ 48
libfreem, freem_ent_t.name 48
libfreem, freem_ent_t.status.................... 48
libfreem, freem_ent_t.value..................... 48
libfreem, freem_function() 53
libfreem, freem_get()................ 50
libfreem, freem_init()t 48
libfreem, freem kill() 51
libfreem, freem lock()................... 52
libfreem, freem_order() 52
libfreem, freem_procedure().................... 53
libfreem, freem_query()coooio.. 52
libfreem, freem_ref t.name..................... 47
libfreem, freem_ref_t.reftype 47
libfreem, freem_ref_t.status.................... 47
libfreem, freem_ref_t.subscript_count........... 47
libfreem, freem_ref_t.subscripts 47
libfreem, freem_ref t.value..................... 47
libfreem, freem_set()................. 49
libfreem, freem_tcommit() 53
libfreem, freem_tlevel() 53
libfreem, freem_trestart() 52
libfreem, freem_trollback()..................... 52
libfreem, freem_tstart()o... 52
libfreem, freem_unlock() 52
libfreem, freem_version()....................... 49
limitations, memory 60
LOCK . .ot 19

maximum size, global 60
maximum size, routine......................... 60
maximum size, string................. ... 60
MERGE. ... 19
modes, Programmer.ouuueeeennnneeennnnn 5

N

namespaces, adding. i 44
namespaces, listing oL 43
NAMESPACES, OVETVIEW . ..ttt 43

Namespaces, FeMOVINEG vvveeeeeeeeeeeeen.... 44

70
networks, input and output.................... 32
networks, opening and connecting client sockets
... 32
NEW . 19
O
OPEN. .. 20
operators, 30
OPETatorS, F .o oottt 29
OPETAtOTS, FF= . ittt 29
OPETAtors, & ..ottt 30
OPETAtOTS, 7ttt 30
operators, * 29
operators, ¥* L 29
operators, ¥¥= 29
operators, ¥=.. 29
operators, + 29
operators, ++ 29
operators, +=....... il 29
operators, -. ... i 29
Operators, —t 29
operators, -=.......... ... i 29
OPETAtOTS, / vt v it 29
OPErators, /=ciiiiiiiiiiini i, 29
operators, <......... i 29
OPErators, <=..........ciiiiuiiiiiiiiiieanin. 30
operators, =......... ... i i 30
operators, > 30
operators, >=......... . i 30
OPErators, 7 ...t 30
operators, @........ i 30
OPETALOTS, [« v vttt 30
OPETators, | .. .vu ittt 30
OPErators, || ..ot 30
operators, _ i 30
OpPerators, —=o 30
operators, \ 29
operators, \=..........o oo 29
operators, unary +............. oo 29
operators, UNary -oueeeeunnnneeennn.. 29
options, command-line.......................... 3
Q
QUIT .o e 21
R
READ ..o 21
REPL, direct-mode 7
riutility......oo 44
routines, as shell scripts............... 3
routines, importing 44
S
SE T . 21

Index

shebang line.......... o it 3
shell scripting.......... i 3
SOV S i 25
standards, ANSL........ o ... 66
standards, implementation conformance clause
... 66
structured system variables 25, 39
structured system variables, "$§CHARACTER.. 25
structured system variables, "$DEVICE........ 25
structured system variables, “$DISPLAY 26
structured system variables, "SEVENT 26
structured system variables, "$§GLOBAL....... 26
structured system variables, “$JOB............ 26
structured system variables, “$LOCK.......... 27
structured system variables, “$PDISPLAY 27
structured system variables, “$SROUTINE...... 27
structured system variables, “"$SYSTEM 27
structured system variables, "$SWINDOW. 27
structured system variables, “$ZPROCESS. 27
structured system variables, user-defined....... 39
system library routines 40
system library routines, “%ZCOLUMNS 40
system library routines, “%ZFREEM 40
system library routines, “%ZHELP 40
system library routines, “%ZROWS............ 40
T
TCOMMIT ..o e 21
TRESTARTo 21
TROLLBACK 21
TSTART ..o 21
U
USE . i 21
utilities, fmadmo 54
utilities, gfix....... ... i 55
utilities, legacy o 55
utilities, legacy, gcompact...................... 55
utilities, legacy, gl it 55
utilities, legacy, glocks 55
utilities, legacy, grestore 55
utilities, legacy, gverify 56
utilities, legacy, namespace..................... 56
utilities, legacy, ri............. 56
utilities, legacy, routine import................. 56
utilities, ... 44
utilities, system management 54
\%
variables, intrinsic special 8
variables, structured system 25
VIEW . 22

VIEW commands/functions, 16, total count of
error messages/view single error message .. 58

VIEW commands/functions, 17, intrinsic
Z-commands 58

71
VIEW commands/functions, 18, intrinsic
Z-functions i 58
VIEW commands/functions, 19, intrinsic special
variables 58
VIEW commands/functions, 20, break service code
... 58
VIEW commands/functions, 21, view size of last
global....... ... 58
VIEW commands/functions, 22, count VIEW 22
aliases ... 58
VIEW commands/functions, 23, input buffer
contents il 58
VIEW commands/functions, 24, maximum number
of screen rows............ 58
VIEW commands/functions, 25, maximum number
of screen columns 58
VIEW commands/functions, 26,
DO/FOR/XECUTE stack pointer......... 58

VIEW commands/functions, 27,
DO/FOR/XECUTE stack pointer, on error

... 59
VIEW commands/functions, 28, switch symbol
table. 59
VIEW commands/functions, 29, copy symbol table
... 59
VIEW commands/functions, 30, inspect arguments
... 59
VIEW commands/functions, 31, count
environment variables..................... 59
WRITE . ..o 22
X
XECUTE ..o e 22
Z
z functions, user-defined 38
ZALLOCATE ..o 22
ZASSERT ... 22
ZBREAK ... 22
ZDEALLOCATE...... ..o 22
ZGO .o 22
ZHALT .o 22
ZINSERT .. e 22
ZJOB .o 22
ZLOAD .. 22
INEW 22
ZPRINT ..o 23
ZQUIT .o 23
ZREMOVE. 23
ZSAVE . . 23
ZTRAP .. 23
ZWATCH ... e 23
ZWRITE ... 24

	Introduction
	Production Readiness
	Contributors

	FreeM Invocation
	Synopsis
	Command-Line Options
	Using FreeM for Shell Scripting

	The FreeM Direct-Mode Environment
	Direct-Mode Commands
	REPL Functionality

	Intrinsic Special Variables
	$DEVICE
	$ECODE
	$ESTACK
	$ETRAP
	$HOROLOG
	$IO
	$JOB
	$KEY
	$PRINCIPAL
	$QUIT
	$STACK
	$STORAGE
	$SYSTEM
	$TEST
	$TLEVEL
	$TRESTART
	$X
	$Y
	$ZA
	$ZB
	$ZCONTROLC
	$ZDATE
	$ZERROR
	$ZF
	$ZHOROLOG
	$ZINRPT
	$ZJOB
	$ZLOCAL
	$ZMATCHCONTROL
	$ZMATCHNUMERIC
	$ZMATCHPUNCTUATION
	$ZMATCHALPHABETIC
	$ZMATCHLOWERCASE
	$ZMATCHUPPERCASE
	$ZMATCHEVERYTHING
	$ZPRECISION
	$ZREFERENCE
	$ZSYSTEM
	$ZTIME
	$ZTRAP
	$ZVERSION

	Intrinsic Functions
	$ASCII
	$CHAR
	$DATA
	$EXTRACT
	$FIND
	$FNUMBER
	$GET
	$JUSTIFY
	$LENGTH
	$NAME
	$NEXT
	$ORDER
	$PIECE
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$RANDOM
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$VIEW
	$ZBOOLEAN
	$ZCALL
	$ZCR
	$ZCRC
	$ZDATA
	$ZDATE
	$ZEDIT
	$ZHOROLOG
	$ZHT
	$ZKEY
	$ZLENGTH
	$ZLSD
	$ZM
	$ZNAME
	$ZNEXT
	$ZORDER
	$ZPIECE
	$ZPREVIOUS
	$ZREPLACE
	$ZSYNTAX
	$ZSORT
	$ZTIME
	$ZZIP

	Commands
	ABLOCK
	ASTART
	ASTOP
	AUNBLOCK
	BREAK
	CLOSE
	DO
	ELSE
	FOR
	GOTO
	HALT
	HANG
	IF
	JOB
	KILL
	KSUBSCRIPTS
	KVALUE
	LOCK
	MERGE
	NEW
	OPEN
	QUIT
	READ
	SET
	TCOMMIT
	TRESTART
	TROLLBACK
	TSTART
	USE
	VIEW
	WRITE
	XECUTE
	ZALLOCATE
	ZASSERT
	ZBREAK
	ZDEALLOCATE
	ZGO
	ZHALT
	ZINSERT
	ZJOB
	ZLOAD
	ZNEW
	ZPRINT
	ZQUIT
	ZREMOVE
	ZSAVE
	ZTRAP
	ZWATCH
	ZWRITE

	Structured System Variables
	^$CHARACTER
	^$DEVICE
	^$DISPLAY
	^$EVENT
	^$GLOBAL
	^$JOB
	^$LOCK
	^$PDISPLAY
	^$ROUTINE
	^$SYSTEM
	^$WINDOW
	^$ZPROCESS

	Operators
	Unary +
	Unary -
	+ (Add)
	+= (Add/Assign)
	++ (Postfix Increment)
	- (Subtract)
	-= (Subtract/Assign)
	-- (Postfix Decrement)
	* (Multiply)
	*= (Multiply/Assign)
	/ (Divide)
	/= (Divide/Assign)
	\ (Integer Divide)
	\= (Integer Divide/Assign)
	# (Modulo)
	#= (Modulo/Assign)
	** (Exponentiate)
	**= (Exponentiate/Assign)
	< (Less Than)
	<= (Less Than or Equal To)
	> (Greater Than)
	>= (Greater Than or Equal To)
	_ (Concatenate)
	_= (Concatenate/Assign)
	= (Equals)
	[(Contains)
] (Follows)
]] (Sorts After)
	? (Pattern Match)
	& (Logical AND)
	! (Logical OR)
	' (Logical NOT)
	@ (Indirect)

	Sequential I/O
	Network I/O
	Opening and Connecting a Client Socket

	Asynchronous Event Handling
	Setting Up Async Event Handlers
	Registering an Asynchronous Event Handler
	Enabling Asynchronous Event Handling
	Disabling Asynchronous Event Handling
	Temporarily Blocking Asynchronous Event Handling

	Synchronous Event Handling
	GUI Programming with MWAPI
	User-Defined Z Commands
	User-Defined Z Functions
	User-Defined SSVs
	System Library Routines
	^%ZCOLUMNS
	^%ZFREEM
	^%ZHELP
	^%ZROWS

	Error Processing
	Debugging
	System Configuration
	Installing FreeM
	Namespaces Overview
	Listing Namespaces
	Adding Namespaces
	Removing Namespaces
	Importing Routines

	Accessing FreeM from C Programs
	freem_ref_t Data Structure
	freem_ent_t Data Structure
	freem_init()
	freem_version()
	freem_set()
	freem_get()
	freem_kill()
	freem_data()
	freem_order()
	freem_query()
	freem_lock()
	freem_unlock()
	freem_tstart()
	freem_trestart()
	freem_trollback()
	freem_tlevel()
	freem_tcommit()
	freem_function()
	freem_procedure()

	FreeM Administrator
	FreeM Legacy Utilities
	Global Compactor (gcompact)
	Block Examiner (gfix)
	Global Lister (gl)
	Lock Examiner (glocks)
	Global Repair Tool (grestore)
	Global Validator (gverify)
	Namespace Manager (namespace)
	Routine Import (ri)

	FreeM VIEW Commands and Functions
	VIEW 16: Total Count of Error Messages/View Single Error Message
	VIEW 17: Intrinsic Z-Commands
	VIEW 18: Intrinsic Z-Functions
	VIEW 19: Intrinsic Special Variables
	VIEW 20: Break Service Code
	VIEW 21: View Size of Last Global
	VIEW 22: Count VIEW 22 Aliases
	VIEW 23: View Contents of Input Buffer
	VIEW 24: Maximum Number of Screen Rows
	VIEW 25: Maximum Number of Screen Columns
	VIEW 26: DO/FOR/XECUTE Stack Pointer
	VIEW 27: DO/FOR/XECUTE Stack Pointer (On Error)
	VIEW 28: Switch Symbol Table
	VIEW 29: Copy Symbol Table
	VIEW 30: Inspect Arguments
	VIEW 31: Count Environment Variables

	Implementation Limits
	US-ASCII Character Set
	FreeM Project Coding Standards
	Module Headers
	Variable Naming
	Indentation and General Layout
	Brace Placement (Functions)
	Brace Placement (if-for-while-do)
	Labels and goto
	Preprocessor Conditionals
	coding standards, preprocessor conditionals
	Overall Program Spacing
	The switch() Statement
	Comments

	Conformance Clause
	Index

